A note on spin, vorticity and the deformation-rate tensor

1996 ◽  
Vol 62 (1) ◽  
pp. 95-98
Author(s):  
A.C. Smith ◽  
P.N. Kaloni
1996 ◽  
Vol 93 ◽  
pp. 837-849 ◽  
Author(s):  
A Bot ◽  
IA van Amerongen ◽  
RD Groot ◽  
NL Hoekstra ◽  
WGM Agterof

2019 ◽  
Vol 11 (2) ◽  
pp. 166 ◽  
Author(s):  
Yuzhou Liu ◽  
Peifeng Ma ◽  
Hui Lin ◽  
Weixi Wang ◽  
Guoqiang Shi

The Lianjiang Plain in China and ancient villages distributed within the plain are under the potential threat of surface motion change, but no effective monitoring strategy currently exists. Distributed Scatterer InSAR (DSInSAR) provides a new high-resolution method for the precise detection of surface motion change. In contrast to the first-generation of time-series InSAR methodology, the distributed scatterer-based method focuses both on pointwise targets with high phase stability and distributed targets with moderate coherence, the latter of which is more suitable for the comprehensive environment of the Lianjiang Plain. In this paper, we present the first study of surface motion change detection in the Lianjiang Plain, China. Two data stacks, including 54 and 29 images from Sentinel-1A adjacent orbits, are used to retrieve time-series surface motion changes for the Lianjiang Plain from 2015 to 2018. The consistency of measurement has been cross-validated between adjacent orbit results with a statistically significant determination coefficient of 0.92. The temporal evolution of representative measuring points indicates three subzones with varied surface patterns: Eastern Puning (Zone A) in a slight elastic rebound phase with a moderate deformation rate (0–40 mm/yr), Chaonan (Zone B) in a substantial subsidence phase with a strong deformation rate (−140–0 mm/yr), and Chaoyang (Zone C) in a homogeneous and stable situation (−10–10 mm/yr). The spatial distribution of these zones suggests a combined change dynamic and a strong concordance of factors impacting surface motion change. Human activities, especially groundwater exploitation, dominate the subsidence pattern, and natural conditions act as a supplementary inducement by providing a hazard-prone environment. The qualitative and quantitative analysis of spatial and temporal details in this study provides a basis for systematic surface motion monitoring, cultural heritage protection and groundwater resources management.


2008 ◽  
Author(s):  
Shawn C. Maxwell ◽  
Julie Ellen Shemeta ◽  
Elizabeth Campbell ◽  
David James Quirk
Keyword(s):  

Polymer ◽  
2011 ◽  
Vol 52 (18) ◽  
pp. 4141-4149 ◽  
Author(s):  
Xiuqin Zhang ◽  
Konrad Schneider ◽  
Guoming Liu ◽  
Jianhong Chen ◽  
Karsten Brüning ◽  
...  

2013 ◽  
Vol 753-755 ◽  
pp. 241-244
Author(s):  
Peng Tian ◽  
Zhi Yong Zhong ◽  
Wei Jun Hui ◽  
Rui Guo Bai ◽  
Xing Li Zhang ◽  
...  

The hot compressive deformation behavior of SWRCH 35K was studied with uniaxial hot compression simulation tests at 923 ~ 1223 K and strain rate of 0.01 ~ 20 /s. The results show that the hot compressive deformation activation energy was 408 kJ/mol and the rang of deformation stored energy was 10 ~ 50 J/mol. The quadratic fitting expression between deformation stored energy and Zener-Hollomon parameter (Z) was established and the deformation stored energy was considered to increased with increasing Z or with lower deformation temperature and increasing deformation rate.


Sign in / Sign up

Export Citation Format

Share Document