Intraplate volcanism in Eastern Australia and New Zealand

1991 ◽  
Vol 46 (3-4) ◽  
pp. 331-332
Author(s):  
J.W. Cole
Author(s):  
J. Walker

Abstract A description is provided for Melampsora medusae. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: Pycnia and aecia on Coniferae, especially Larix and Pseudotsuga, less commonly on Pinus and other genera (Ziller, 1965). Uredinia and telia on species of Populus, especially Populus deltoides, and its varieties and hybrids P. balsamifera, P. nigra var. italica and others. Its exact host range on species of Populus is not known due to confusion with other species of Melampsora and to uncertainty in the reported identity of some species of Populus and clones (Walker, Hartigan & Bertus, 1974). DISEASE: Leaf rust of poplars, causing severe leaf damage and early defoliation on susceptible species and clones. Continued defoliation of successive flushes of growth predisposes trees to winter injury and dieback (Peace, 1962) and can cause death of trees, especially nursery stock and trees 1-2 yr old (25, 204; 47, 241; Walker Haitigan & Bertus, 1974). Reduction in incremental growth of timber occurs with susceptible varieties. Some damage can occur to the conifer hosts. It is often severe on Pseudotsuga menziesii (45, 459; 47, 126) and in nurseries Pinus spp. and Larix spp. can be heavily attacked (Ziller, 1965). GEOGRAPHICAL DISTRIBUTION: North America (Canada, USA), Asia (Japan); Australasia and Oceania (Australia, New Zealand); Europe (France, Spain). Reports of Melampsora spp. on poplars (including P. deltoides and P. canadensis) from South America (Argentina, 21, 173), Uruguay (Lindquist & de Rosengurtt, 1967) may refer in part to M. medusae. TRANSMISSION: By air-borne urediniospores, often over long distances (suspected from eastern Australia to New Zealand). Urediniospores survive the winter in milder climates on semi-evergreen lines and on green sucker growth of deciduous trees. This is probably the main method of overwintering in the Southern Hemisphere and in warmer parts of the Northern Hemisphere. The possibility of bud carryover as occurs with M. epitea on Salix in Iceland (Jorstad, 1951) and the Canadian Arctic (Savile, 1972) should be investigated. Telia survive the winter and basidiospores formed in spring infect susceptible conifers in parts of the Northern Hemisphere (Ziller, 1965) but no conifer infection has so far been found in Australia.


2018 ◽  
Vol 71 ◽  
pp. 352
Author(s):  
Aymee S.R. Lewis ◽  
Toni M. Withers ◽  
Helen F. Nahrung ◽  
Rebecca L. McDougal ◽  
Chris A.M. Reid ◽  
...  

Paropsisterna variicollis, the eucalyptus variegated beetle, was first detected in New Zealand in 2016. It threatens a growing eucalyptus forestry sector through larvae and adults causing significant defoliation to important plantation species. This work aimed to clarify the identification and origin of the New Zealand incursion to inform selection of suitable biological control agent(s). Australian and New Zealand specimens from the Paropsisterna obovata-variicollis-cloelia species complex were analysed by PCR and sequencing of two genetic loci, cytochrome c subunit I (COI) and cytochrome b (Cyt b). Molecular analysis of both genetic regions showed three major clusters of diversity. Cluster 1, proposed as Paropsisterna variicollis, had maximum 1.3% genetic variation and was collected from New Zealand, Western Australia and from geographically diverse locations in eastern Australia. Taxonomic results identified distinctive phenotypes of other closely related beetle species, assisting in proposing Cluster 2 as Paropsisterna near decolorata and Cluster 3 as Paropsisterna agricola. Molecular results were compared to morphological structures on adult beetles.


Lithos ◽  
2021 ◽  
pp. 106564
Author(s):  
O.E. McLeod ◽  
M. Brenna ◽  
R.M. Briggs ◽  
A. Pittari

2021 ◽  
Author(s):  
Lisa Berndt

Abstract U. lugens was first considered a serious pest of natural eucalypt forests in Western Australia in 1983 when the first severe outbreak occurred there (Strelein, 1988). Prior to that it was widely known as a pest of eucalypt forests in eastern Australia (Campbell, 1962; Harris, 1974). As these natural forests are or were managed for timber production, it is considered an economically important pest in its native range. Damage to amenity trees is also a common problem, although few trees are killed by this defoliation (Anonymous, 1979).U. lugens was recorded as invasive in New Zealand by Crabtree (1997). In its exotic range it has become a significant pest of amenity trees, particularly Lophestemon confertus (Australian brush box), which is commonly planted in some parts of Auckland City (Kriticos et al., 2007).


2020 ◽  
Vol 6 (51) ◽  
pp. eabd0953
Author(s):  
Ben R. Mather ◽  
R. Dietmar Müller ◽  
Maria Seton ◽  
Saskia Ruttor ◽  
Oliver Nebel ◽  
...  

Long-lived, widespread intraplate volcanism without age progression is one of the most controversial features of plate tectonics. Previously proposed edge-driven convection, asthenospheric shear, and lithospheric detachment fail to explain the ~5000-km-wide intraplate volcanic province from eastern Australia to Zealandia. We model the subducted slab volume over 100 million years and find that slab flux drives volcanic eruption frequency, indicating stimulation of an enriched mantle transition zone reservoir. Volcanic isotope geochemistry allows us to distinguish a high-μ (HIMU) reservoir [>1 billion years (Ga) old] in the slab-poor south, from a northern EM1/EM2 reservoir, reflecting a more recent voluminous influx of oceanic lithosphere into the mantle transition zone. We provide a unified theory linking plate boundary and slab volume reconstructions to upper mantle reservoirs and intraplate volcano geochemistry.


Viruses ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1155 ◽  
Author(s):  
Kate Van Brussel ◽  
Maura Carrai ◽  
Carrie Lin ◽  
Mark Kelman ◽  
Laura Setyo ◽  
...  

Feline panleukopenia (FPL), a frequently fatal disease of cats, is caused by feline parvovirus (FPV) or canine parvovirus (CPV). We investigated simultaneous outbreaks of FPL between 2014 and 2018 in Australia, New Zealand and the United Arab Emirates (UAE) where FPL outbreaks had not been reported for several decades. Case data from 989 cats and clinical samples from additional 113 cats were obtained to determine the cause of the outbreaks and epidemiological factors involved. Most cats with FPL were shelter-housed, 9 to 10 weeks old at diagnosis, unvaccinated, had not completed a primary vaccination series or had received vaccinations noncompliant with current guidelines. Analysis of parvoviral VP2 sequence data confirmed that all FPL cases were caused by FPV and not CPV. Phylogenetic analysis revealed that each of these outbreaks was caused by a distinct FPV, with two virus lineages present in eastern Australia and virus movement between different geographical locations. Viruses from the UAE outbreak formed a lineage of unknown origin. FPV vaccine virus was detected in the New Zealand cases, highlighting the difficulty of distinguishing the co-incidental shedding of vaccine virus in vaccinated cats. Inadequate vaccination coverage in shelter-housed cats was a common factor in all outbreaks, likely precipitating the multiple re-emergence of infection events.


Sign in / Sign up

Export Citation Format

Share Document