Characterization of the Alu-rich 5′-flanking region of the human prothrombin-encoding gene: identification of a positive cis-acting element that regulates liver-specific expression

Gene ◽  
1990 ◽  
Vol 95 (2) ◽  
pp. 253-260 ◽  
Author(s):  
John D. Bancroft ◽  
Lorie A. Schaefer ◽  
Sandra J. Friezner Degen
1990 ◽  
Vol 10 (4) ◽  
pp. 1784-1788
Author(s):  
Y P Hwung ◽  
Y Z Gu ◽  
M J Tsai

The 5'-flanking region of the rat insulin II gene (-448 to +50) is sufficient for tissue-specific expression. To further determine the tissue-specific cis-acting element(s), important sequences defined by linker-scanning mutagenesis were placed upstream of a heterologous promoter and transfected into insulin-producing and -nonproducing cells. Rat insulin promoter element 3 (RIPE3), which spans from -125 to -86, was shown to confer beta-cell-specific expression in either orientation. However, two subregions of RIPE3, RIPE3a and RIPE3b (defined by linker-scanning mutations), displayed only marginal activities. These results suggest that the two subregions cooperate to confer tissue specificity, presumably via their cognate binding factors.


1990 ◽  
Vol 10 (4) ◽  
pp. 1784-1788 ◽  
Author(s):  
Y P Hwung ◽  
Y Z Gu ◽  
M J Tsai

The 5'-flanking region of the rat insulin II gene (-448 to +50) is sufficient for tissue-specific expression. To further determine the tissue-specific cis-acting element(s), important sequences defined by linker-scanning mutagenesis were placed upstream of a heterologous promoter and transfected into insulin-producing and -nonproducing cells. Rat insulin promoter element 3 (RIPE3), which spans from -125 to -86, was shown to confer beta-cell-specific expression in either orientation. However, two subregions of RIPE3, RIPE3a and RIPE3b (defined by linker-scanning mutations), displayed only marginal activities. These results suggest that the two subregions cooperate to confer tissue specificity, presumably via their cognate binding factors.


2014 ◽  
Vol 94 (1) ◽  
pp. 73-83 ◽  
Author(s):  
Woong Bom Kim ◽  
Chan Ju Lim ◽  
Hyun A. Jang ◽  
So Young Yi ◽  
Sang-Keun Oh ◽  
...  

Kim, W. B., Lim, C. J., Jang, H. A., Yi, S. Y., Oh, S.-K., Lee, H. Y., Kim, H. A., Park, Y.-I. and Kwon, S.-Y. 2014. SlPMEI, a pollen-specific gene in tomato. Can. J. Plant Sci. 94: 73–83. Pectin is one of the main components of plant cell walls, and its biosynthesis is controlled by pectin methylesterase (PME). Pectin methylesterase inhibitors (PMEIs) are key regulators of PME. We report here the cloning and characterization of a novel Solanum lycopersicum L. PMEI gene, SlPMEI. RT-PCR studies of leaf, seed, fruit, flower, and flower organs confirmed that SlPMEI is expressed specifically in pollen. Promoter analysis of SlPMEI revealed pollen-specific cis-acting elements (pollen lat52 and g10). In addition, SlPMEI is expressed independently of abiotic stress, pathogen exposure, and growth stage in tomato, and a histochemical analysis of promoter activity revealed pollen-specific expression in both Arabidopsis and tomato. Under the microscope, we observed pollen-specific GUS expression in the stamen of transgenic tomato plant. These results indicate that the promoter of SlPMEI has strong pollen-specific activity, and could therefore be useful for development of industrially and agronomically important transgenic plants.


1996 ◽  
Vol 271 (3) ◽  
pp. F629-F636 ◽  
Author(s):  
A. Cano

NHE3, a transmembrane protein involved in transcellular ion transport, is expressed in the apical membrane of renal and gastrointestinal epithelia. Chronic regulation by multiple stimuli, including glucocorticoid-induced transcriptional regulation, has been demonstrated. To study the tissue-specific expression and transcriptional regulation of NHE3, the 5' flanking region of the rat NHE3 gene was cloned. Two genomic libraries were screened with the 5' end of the NHE3 cDNA. The 5' flanking region and first exon were isolated. Primer extension mapped a single transcription start site in stomach, colon and kidney. The NHE3 promoter near the transcription initiation site is characterized by the absence of TATA and CAAT sequences. Two Sp1 sites, one Egr-1 site, and an initiator with the sequence GGGATTAAA mark the area of transcription initiation. Upstream sequences include multiple DNA sequence elements recognized by the glucocorticoid and thyroid receptors, Sp1, atriopeptin-2, and several other transcription factors. Transcriptional regulation by glucocorticoids and chronic acidosis was demonstrated. Promoter activity was present in OKP cells, a renal proximal tubule cell line, but not in fibroblasts. This suggests that the NHE3 promoter contains elements conferring epithelial cell-specific expression.


Cell Cycle ◽  
2003 ◽  
Vol 2 (6) ◽  
pp. 603-608 ◽  
Author(s):  
Laura Carrassa ◽  
Massimo Broggini ◽  
Faina Vikhanskaya ◽  
Giovanna Damia

2021 ◽  
Vol 49 (1) ◽  
pp. 12191
Author(s):  
Wei ZHENG ◽  
Ziwei ZHANG ◽  
Xuefei YU ◽  
Tongtong XIE ◽  
Ning CHEN ◽  
...  

The WD40 transcription factor (TF) family is widespread in plants and plays important roles in plant growth and development, transcriptional regulation, and tolerance to abiotic stresses. WD40 TFs have been identified and characterized in a diverse series of plant species. However, little information is available on WD40 genes from D. longan. In this study, a total of 45 DlWD40 genes were identified from D. longan RNA-Seq data, and further analysed by bioinformatics tools. Also, the expression patterns of DlWD40 genes in roots and leaves, as well as responses to heat stress, were evaluated using quantitative real-time PCR (qRT-PCR). We found that the 45 DlWD40 proteins, together with 80 WD40 proteins from Arabidopsis and Zea mays, could be categorized into six groups. Of these, the DlWD40-4 protein was highly homologous to Arabidopsis WDR5a, a protein participating in tolerance to abiotic stresses. Moreover, a total of 25 cis-acting elements, such as abiotic stress and flavonoid biosynthesis elements, were found in the promoters of DlWD40 genes. The DlWD40-33 gene is targeted by miR3627, which has been proposed to be involved in flavonoid biosynthesis. Using qRT-PCR, ten of the 45 DlWD40 genes were demonstrated to have diverse expression patterns between roots and leaves, and these ten DlWD40 genes could also respond to varying durations of a 38 °C heat stress in roots and leaves. The results reported here will provide a basis for the further functional verification of DlWD40 genes in D. longan.


2000 ◽  
Vol 279 (6) ◽  
pp. F1027-F1032 ◽  
Author(s):  
M. Andrew Wong ◽  
Shiying Cui ◽  
Susan E. Quaggin

Podocytes are highly specialized cells that make up a major portion of the glomerular filtration barrier in the kidney. They are also believed to play a pivotal role in the progression of chronic renal disease due to diverse causes that include diabetes (3, 20, 24) and aging (1, 7). Despite the importance of podocytes for kidney function and disease, studies of this cell type have been hindered due to a lack of model systems. Recently, the gene responsible for congenital Finnish nephropathy was identified and named nephrin (13). Nephrin expression is restricted to slit diaphragms of podocytes (11, 30). Infants with congenital Finnish nephropathy develop massive proteinuria and subsequent kidney failure due to podocyte injury. We have identified a 1.25-kb DNA fragment from the human nephrin promoter and 5′-flanking region that is capable of directing podocyte-specific expression in transgenic mice; this represents the first glomerular-specific promoter to be identified. Use of this transgene will facilitate studies of the podocyte in vivo and allow the identification of transacting factors that are required for podocyte-specific expression.


Sign in / Sign up

Export Citation Format

Share Document