P element transformation vectors for studying Drosophila melanogaster oogenesis and early embryogenesis

Gene ◽  
1994 ◽  
Vol 138 (1-2) ◽  
pp. 181-186 ◽  
Author(s):  
Thomas L. Serano ◽  
Hung-Kam Cheung ◽  
Lawrence H. Frank ◽  
Robert S. Cohen
Genome ◽  
2001 ◽  
Vol 44 (4) ◽  
pp. 698-707
Author(s):  
Patrick Morcillo ◽  
Ross J MacIntyre

A hsp70–lacZ fusion gene introduced into Drosophila melanogaster at the euchromatic 31B region by P-element transformation displayed a variegated expression with respect to the lacZ fusion protein in the salivary gland cells under heat-shock conditions. The variegation is also reflected by the chromosome puffing pattern. Subsequent transposition of the 31B P element to other euchromatic positions restored wild-type activity, that is, a nonvariegated phenotype. A lower developmental temperature reduced the amount of expression under heat-shock conditions, similar to genes undergoing position-effect variegation (PEV). However, other modifiers of PEV did not affect the expression pattern of the gene. These results show a novel euchromatic tissue-specific variegation that is not associated with classical heterochromatic PEV.Key words: Drosophila, euchromatic position effect, heat shock construct.


1991 ◽  
Vol 2 (11) ◽  
pp. 875-888 ◽  
Author(s):  
B Bienz-Tadmor ◽  
H S Smith ◽  
S A Gerbi

DNA puffs occur in Sciarid salivary gland chromosomes; they are sites of DNA amplification and intense transcription and they appear to encode secreted structural proteins needed for pupation. In this report we have used P-element transformation of Drosophila to study regulation of a Sciara DNA puff gene. We found that a 718-bp promoter fragment of DNA puff gene II/9-1 from Sciara coprophila directs expression of the bacterial reporter gene CAT in late prepupal salivary glands of transgenic Drosophila melanogaster. The identical tissue and analogous stage specificity indicate that some aspects of the ecdysone response are evolutionarily conserved between Drosophila and Sciara. When transgenic salivary glands are cultured in vitro, CAT activity is rapidly induced by ecdysone, suggesting direct control of gene expression by the ecdysone receptor. Putative stage-specific factors limit expression of the chimeric Sciara-CAT gene in transgenic Drosophila to late prepupae but not to third instar larvae when ecdysone titers are also high.


Genetics ◽  
2002 ◽  
Vol 161 (1) ◽  
pp. 205-215 ◽  
Author(s):  
Michael J Simmons ◽  
Kevin J Haley ◽  
Craig D Grimes ◽  
John D Raymond ◽  
Joseph C L Fong

Abstract Fusions between the Drosophila hsp70 promoter and three different incomplete P elements, KP, SP, and BP1, were inserted into the Drosophila genome by means of hobo transformation vectors and the resulting transgenic stocks were tested for repression of P-element transposase activity. Only the H(hsp/KP) transgenes repressed transposase activity, and the degree of repression was comparable to that of a naturally occurring KP element. The KP transgenes repressed transposase activity both with and without heat-shock treatments. Both the KP element and H(hsp/KP) transgenes repressed the transposase activity encoded by the modified P element in the P(ry+, Δ2-3)99B transgene more effectively than that encoded by the complete P element in the H(hsp/CP)2 transgene even though the P(ry+, Δ2-3)99B transgene was the stronger transposase source. Repression of both transposase sources appeared to be due to a zygotic effect of the KP element or transgene. There was no evidence for repression by a strictly maternal effect; nor was there any evidence for enhancement of KP repression by the joint maternal transmission of H(hsp/KP) and H(hsp/CP) transgenes. These results are consistent with the idea that KP-mediated repression of P-element activity involves a KP-repressor polypeptide that is not maternally transmitted and that KP-mediated repression is not strengthened by the 66-kD repressor produced by complete P elements through alternate splicing of their RNA.


Genetics ◽  
1989 ◽  
Vol 122 (3) ◽  
pp. 625-642 ◽  
Author(s):  
R A Voelker ◽  
S M Huang ◽  
G B Wisely ◽  
J F Sterling ◽  
S P Bainbridge ◽  
...  

Abstract Recessive mutations at the suppressor of sable [su(s)] locus in Drosophila melanogaster result in suppression of second site mutations caused by insertions of the mobile element 412. In order to determine whether su(s) mutations might have other phenotypes, a saturation mapping of the su(s) region was carried out. The screen yielded 76 mutations that comprise ten genetic complementation groups ordered distal to proximal as follows: l(1)1Bh, l(1)1Bi, M(1)1B, su(s), l(1)1Bk, l(1)1Ca, mul, tw, l(1)lDa and brc. Twenty-three of the mutations are su(s) alleles, and all are suppressors of the 412-insertion-caused v1 allele. Although the screen could have detected su(s) mutations causing sex-specific dominant lethality or sterility as well as all types of recessive lethality or sterility, the only other phenotype observed was male sterility that is enhanced by cold temperature. This type of sterility is exhibited only by alleles induced by base-substitution-causing mutagens. Genetic functions of the poly(A+) messages transcribed from the su(s) microregion were identified by the reintroduction of cloned sequences into embryos by P element transformation. su(s) function has been attributed to a 5-kb message. The segment of DNA encoding only this 5-kb message rescues both the suppression and cold-sensitive male sterility phenotypes of su(s). Minute (1) 1B has been provisionally identified as encoding a 3.5-kb message; lethal (1)1Bi encodes a 1-kb message; and lethal (1)1Bk encodes a 4-kb message. The possible functions of su(s) and M(1)1B are discussed.


Cell ◽  
1984 ◽  
Vol 39 (2) ◽  
pp. 369-376 ◽  
Author(s):  
William A. Zehring ◽  
David A. Wheeler ◽  
Pranhitha Reddy ◽  
Ronald J. Konopka ◽  
Charalambos P. Kyriacou ◽  
...  

Genetics ◽  
2002 ◽  
Vol 161 (1) ◽  
pp. 195-204 ◽  
Author(s):  
Michael J Simmons ◽  
Kevin J Haley ◽  
Craig D Grimes ◽  
John D Raymond ◽  
Jarad B Niemi

Abstract Drosophila were genetically transformed with a hobo transgene that contains a terminally truncated but otherwise complete P element fused to the promoter from the Drosophila hsp70 gene. Insertions of this H(hsp/CP) transgene on either of the major autosomes produced the P transposase in both the male and female germlines, but not in the soma. Heat-shock treatments significantly increased transposase activity in the female germline; in the male germline, these treatments had little effect. The transposase activity of two insertions of the H(hsp/CP) transgene was not significantly greater than their separate activities, and one insertion of this transgene reduced the transposase activity of P(ry+, Δ2-3)99B, a stable P transgene, in the germline as well as in the soma. These observations suggest that, through alternate splicing, the H(hsp/CP) transgene produces a repressor that feeds back negatively to regulate transposase expression or function in both the somatic and germline tissues. The H(hsp/CP) transgenes are able to induce gonadal dysgenesis when the transposase they encode has P-element targets to attack. However, this ability and the ability to induce P-element excisions are repressed by the P cytotype, a chromosomal/cytoplasmic state that regulates P elements in the germline.


Genetics ◽  
1996 ◽  
Vol 143 (4) ◽  
pp. 1663-1674 ◽  
Author(s):  
Stéphane Ronsseray ◽  
Monique Lehmann ◽  
Danielle Nouaud ◽  
Dominique Anxolabéhère

Abstract Genetic recombination was used in Drosophila melanogaster to isolate P elements, inserted at the telomeres of X chromosomes (cytological site 1A) from natural populations, in a genetic background devoid of other P elements. We show that complete maternally inherited P repression in the germline (P cytotype) can be elicited by only two autonomous P elements at 1A and that a single element at this site has partial regulatory properties. The analysis of the surrounding chromosomal regions of the P elements at 1A shows that in all cases these elements are flanked by Telomeric Associated Sequences, tandemly repetitive noncoding sequences that have properties of heterochromatin. In addition, we show that the regulatory properties of P elements at 1A can be inhibited by some of the mutant alleles of the Su(var)205 gene and by a deficiency of this gene. However, the regulatory properties of reference P strains (Harwich and Texas 007) are not impaired by Su(var)205 mutations. Su(var)205 encodes Heterochromatin Protein 1 (HP1). These results suggest that the HP1 dosage effect on the P element properties is sitedependent and could involve the structure of the chromatin.


Genetics ◽  
1993 ◽  
Vol 135 (4) ◽  
pp. 1063-1076 ◽  
Author(s):  
D Smith ◽  
J Wohlgemuth ◽  
B R Calvi ◽  
I Franklin ◽  
W M Gelbart

Abstract P element enhancer trapping has become an indispensable tool in the analysis of the Drosophila melanogaster genome. However, there is great variation in the mutability of loci by these elements such that some loci are relatively refractory to insertion. We have developed the hobo transposable element for use in enhancer trapping and we describe the results of a hobo enhancer trap screen. In addition, we present evidence that a hobo enhancer trap element has a pattern of insertion into the genome that is different from the distribution of P elements in the available database. Hence, hobo insertion may facilitate access to genes resistant to P element insertion.


Sign in / Sign up

Export Citation Format

Share Document