DNA from Drosophila melanogaster β-heterochromatin binds specifically to nuclear lamins in vitro and the nuclear envelope in situ

Gene ◽  
1996 ◽  
Vol 171 (2) ◽  
pp. 171-176 ◽  
Author(s):  
Ella A. Baricheva ◽  
Miguel Berrios ◽  
Sergei S. Bogachev ◽  
Igor V. Borisevich ◽  
Eugenia R. Lapik ◽  
...  
Cells ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 162
Author(s):  
Marianne Grafe ◽  
Petros Batsios ◽  
Irene Meyer ◽  
Daria Lisin ◽  
Otto Baumann ◽  
...  

Nuclear lamins are nucleus-specific intermediate filaments (IF) found at the inner nuclear membrane (INM) of the nuclear envelope (NE). Together with nuclear envelope transmembrane proteins, they form the nuclear lamina and are crucial for gene regulation and mechanical robustness of the nucleus and the whole cell. Recently, we characterized Dictyostelium NE81 as an evolutionarily conserved lamin-like protein, both on the sequence and functional level. Here, we show on the structural level that the Dictyostelium NE81 is also capable of assembling into filaments, just as metazoan lamin filament assemblies. Using field-emission scanning electron microscopy, we show that NE81 expressed in Xenopous oocytes forms filamentous structures with an overall appearance highly reminiscent of Xenopus lamin B2. The in vitro assembly properties of recombinant His-tagged NE81 purified from Dictyostelium extracts are very similar to those of metazoan lamins. Super-resolution stimulated emission depletion (STED) and expansion microscopy (ExM), as well as transmission electron microscopy of negatively stained purified NE81, demonstrated its capability of forming filamentous structures under low-ionic-strength conditions. These results recommend Dictyostelium as a non-mammalian model organism with a well-characterized nuclear envelope involving all relevant protein components known in animal cells.


1987 ◽  
Vol 7 (6) ◽  
pp. 2119-2127 ◽  
Author(s):  
R J Gregory ◽  
K L Kammermeyer ◽  
W S Vincent ◽  
S G Wadsworth

We have sequenced a cDNA clone for the Drosophila melanogaster gene Dsrc28C, a homolog of the vertebrate gene c-src. The cDNA contains a single open reading frame encoding a protein of 66 kilodaltons which contains features highly conserved within the src family of tyrosine protein kinases. Novel structural features of the Dsrc28C protein include a basic pI and a polyglycine domain near the amino terminus. Cell-free translation of in vitro-transcribed RNA yielded a protein of the predicted size which could be immunoprecipitated by anti-v-src antisera. RNA blot hybridization revealed that the gene is expressed predominantly during embryogenesis, in imaginal disks of third-instar larvae, and in adult females. In situ hybridization showed that expression in adult females is largely confined to nurse cells and developing oocytes.


1996 ◽  
Vol 7 (5) ◽  
pp. 825-842 ◽  
Author(s):  
W F Marshall ◽  
A F Dernburg ◽  
B Harmon ◽  
D A Agard ◽  
J W Sedat

Specific interactions of chromatin with the nuclear envelope (NE) in early embryos of Drosophila melanogaster have been mapped and analyzed. Using fluorescence in situ hybridization, the three-dimensional positions of 42 DNA probes, primarily to chromosome 2L, have been mapped in nuclei of intact Drosophila embryos, revealing five euchromatic and two heterochromatic regions associated with the NE. These results predict that there are approximately 15 NE contacts per chromosome arm, which delimit large chromatin loops of approximately 1-2 Mb. These NE association sites do not strictly correlate with scaffold-attachment regions, heterochromatin, or binding sites of known chromatin proteins. Pairs of neighboring probes surrounding one NE association site were used to delimit the NE association site more precisely, suggesting that peripheral localization of a large stretch of chromatin is likely to result from NE association at a single discrete site. These NE interactions are not established until after telophase, by which time the nuclear envelope has reassembled around the chromosomes, and they are thus unlikely to be involved in binding of NE vesicles to chromosomes following mitosis. Analysis of positions of these probes also reveals that the interphase nucleus is strongly polarized in a Rabl configuration which, together with specific targeting to the NE or to the nuclear interior, results in each locus occupying a highly determined position within the nucleus.


2001 ◽  
Vol 154 (1) ◽  
pp. 61-70 ◽  
Author(s):  
Reynold I. Lopez-Soler ◽  
Robert D. Moir ◽  
Timothy P. Spann ◽  
Reimer Stick ◽  
Robert D. Goldman

The molecular interactions responsible for nuclear envelope assembly after mitosis are not well understood. In this study, we demonstrate that a peptide consisting of the COOH-terminal domain of Xenopus lamin B3 (LB3T) prevents nuclear envelope assembly in Xenopus interphase extracts. Specifically, LB3T inhibits chromatin decondensation and blocks the formation of both the nuclear lamina–pore complex and nuclear membranes. Under these conditions, some vesicles bind to the peripheral regions of the chromatin. These “nonfusogenic” vesicles lack lamin B3 (LB3) and do not bind LB3T; however, “fusogenic” vesicles containing LB3 can bind LB3T, which blocks their association with chromatin and, subsequently, nuclear membrane assembly. LB3T also binds to chromatin in the absence of interphase extract, but only in the presence of purified LB3. Additionally, we show that LB3T inhibits normal lamin polymerization in vitro. These findings suggest that lamin polymerization is required for both chromatin decondensation and the binding of nuclear membrane precursors during the early stages of normal nuclear envelope assembly.


Author(s):  
Matteo Allegretti ◽  
Christian E. Zimmerli ◽  
Vasileios Rantos ◽  
Florian Wilfling ◽  
Paolo Ronchi ◽  
...  

SummaryNuclear pore complexes (NPCs) mediate exchange across the nuclear envelope. They consist of hundreds of proteins called nucleoporins (Nups) that assemble in multiple copies to fuse the inner and outer nuclear membranes. Elucidating the molecular function and architecture of NPCs imposes a formidable challenge and requires the convergence of in vitro and in situ approaches. How exactly NPC architecture accommodates processes such as mRNA export or NPC assembly and turnover inside of cells remains poorly understood. Here we combine integrated in situ structural biology, correlative light and electron microscopy with yeast genetics to structurally analyze NPCs within the native context of Saccharomyces cerevisiae cells under conditions of starvation and exponential growth. We find an unanticipated in situ layout of nucleoporins with respect to overall dimensions and conformation of the NPC scaffold that could not have been predicted from previous in vitro analysis. Particularly striking is the configuration of the Nup159 complex, which appears critical to spatially accommodate not only mRNA export but also NPC turnover by selective autophagy. We capture structural snapshots of NPC turnover, revealing that it occurs through nuclear envelope herniae and NPC-containing nuclear vesicles. Our study provides the basis for understanding the various membrane remodeling events that happen at the interface of the nuclear envelope with the autophagy apparatus and emphasizes the need of investigating macromolecular complexes in their cellular context.


2001 ◽  
Vol 114 (1) ◽  
pp. 9-19 ◽  
Author(s):  
C.J. Hutchison ◽  
M. Alvarez-Reyes ◽  
O.A. Vaughan

The nuclear lamina is a filamentous structure composed of lamins that supports the inner nuclear membrane. Several integral membrane proteins including emerin, LBR, LAP1 and LAP2 bind to nuclear lamins in vitro and can influence lamin function and dynamics in vivo. Results from various studies suggest that lamins function in DNA replication and nuclear envelope assembly and determine the size and shape of the nuclear envelope. In addition, lamins also bind chromatin and certain DNA sequences, and might influence chromosome position. Recent evidence has revealed that mutations in A-type lamins give rise to a range of rare, but dominant, genetic disorders, including Emery-Dreifuss muscular dystrophy, dilated cardiomyopathy with conduction-system disease and Dunnigan-type familial partial lipodystrophy. An examination of how lamins A/C, emerin and other integral membrane proteins interact at the INM provides the basis for a novel model for how mutations that promote disease phenotypes are likely to influence these interactions and therefore cause cellular pathology through a combination of weakness of the lamina or altered gene expression.


1987 ◽  
Vol 7 (6) ◽  
pp. 2119-2127
Author(s):  
R J Gregory ◽  
K L Kammermeyer ◽  
W S Vincent ◽  
S G Wadsworth

We have sequenced a cDNA clone for the Drosophila melanogaster gene Dsrc28C, a homolog of the vertebrate gene c-src. The cDNA contains a single open reading frame encoding a protein of 66 kilodaltons which contains features highly conserved within the src family of tyrosine protein kinases. Novel structural features of the Dsrc28C protein include a basic pI and a polyglycine domain near the amino terminus. Cell-free translation of in vitro-transcribed RNA yielded a protein of the predicted size which could be immunoprecipitated by anti-v-src antisera. RNA blot hybridization revealed that the gene is expressed predominantly during embryogenesis, in imaginal disks of third-instar larvae, and in adult females. In situ hybridization showed that expression in adult females is largely confined to nurse cells and developing oocytes.


Genetics ◽  
1991 ◽  
Vol 129 (2) ◽  
pp. 501-512 ◽  
Author(s):  
S Ronsseray ◽  
M Lehmann ◽  
D Anxolabéhère

Abstract Two P elements, inserted at the cytological site 1A on an X chromosome from an Drosophila melanogaster natural population (Lerik, USSR), were isolated by genetic methods to determine if they are sufficient to cause the P cytotype, the cellular condition that regulates the P family of transposable element. The resulting "Lerik P(1A)" line (abbreviated "Lk-P(1A)") carries only one P element in situ hybridization site but genomic Southern analysis indicates that this site contains two, probably full length, P copies separated by at least one EcoRI cleavage site. Because the Lk-P(1A) line shows some transposase activity, at least one of these two P elements is autonomous. The Lk-P(1A) line fully represses germline P element activity as judged by the GD sterility and snw hypermutability assays; this result shows that the P cytotype can be elicited by only two P element copies. However, the Lk-P(1A) line does not fully repress delta 2-3(99B) transposase activity in the soma, although it fully represses delta 2-3(99B) transposase activity in the germline (delta 2-3(99B) is an in vitro modified P element that produces a high level of transposase activity in both the germline and the soma). The germline regulatory properties of the Lk-P(1A) line are maternally transmitted, even when the delta 2-3(99B) element is used as the source of transposase. By contrast, the partial regulation of delta 2-3(99B) somatic activity is chromosomally inherited. These results suggest that the regulatory P elements of the Lk-P(1A) line are inserted near a germline-specific enhancer.


2004 ◽  
Vol 378 (2) ◽  
pp. 299-305 ◽  
Author(s):  
Attila FARKAS ◽  
Peter TOMPA ◽  
Éva SCHÁD ◽  
Rita SINKA ◽  
Gáspár JÉKELY ◽  
...  

Calpain B is one of the two calpain homologues in Drosophila melanogaster that are proteolytically active. We studied its activation by Ca2+ both in vitro and in vivo, in Schneider (S2) cells. Activation involves the autolytic cleavage, at two major sites, of the N-terminal segment, the length of which was earlier underestimated. Site-directed mutagenesis at the autolytic sites did not prevent autolysis, but only shifted its sites. Calpain B mRNA was detectable in all developmental stages of the fly. In situ hybridization and immunostaining showed expression in ovaries, embryo and larvae, with high abundance in larval salivary glands. In S2 cells, calpain B was mainly in the cytoplasm and upon a rise in Ca2+ the enzyme adhered to intracellular membranes.


Sign in / Sign up

Export Citation Format

Share Document