cellular condition
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 1)

H-INDEX

3
(FIVE YEARS 0)

Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 467
Author(s):  
Oscar Salvador Barrera-Vázquez ◽  
Juan Carlos Gómez-Verjan ◽  
Gil Alfonso Magos-Guerrero

Cellular senescence is a cellular condition that involves significant changes in gene expression and the arrest of cell proliferation. Recently, it has been suggested in experimental models that the elimination of senescent cells with pharmacological methods delays, prevents, and improves multiple adverse outcomes related to age. In this sense, the so-called senoylitic compounds are a class of drugs that selectively eliminates senescent cells (SCs) and that could be used in order to delay such adverse outcomes. Interestingly, the first senolytic drug (navitoclax) was discovered by using chemoinformatic and network analyses. Thus, in the present study, we searched for novel senolytic compounds through the use of chemoinformatic tools (fingerprinting and network pharmacology) over different chemical databases (InflamNat and BIOFACQUIM) coming from natural products (NPs) that have proven to be quite remarkable for drug development. As a result of screening, we obtained three molecules (hinokitiol, preussomerin C, and tanshinone I) that could be considered senolytic compound candidates since they share similarities in structure with senolytic leads (tunicamycin, ginsenoside Rb1, ABT 737, rapamycin, navitoclax, timosaponin A-III, digoxin, roxithromycin, and azithromycin) and targets involved in senescence pathways with potential use in the treatment of age-related diseases.



Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 668 ◽  
Author(s):  
Tingting Zou ◽  
Shinobu Sato ◽  
Rui Yasukawa ◽  
Ryusuke Takeuchi ◽  
Shunsuke Ozaki ◽  
...  

G-quadruplex specific targeting molecules, also termed as G4 ligands, are attracting increasing attention for their ability to recognize and stabilize G-quadruplex and high potentiality for biological regulation. However, G4 ligands recognizing G-quadruplex were generally investigated within a dilute condition, which might be interfered with under a cellular crowding environment. Here, we designed and synthesized several new cyclic naphthalene diimide (cNDI) derivatives, and investigated their interaction with G-quadruplex under molecular crowding condition (40% v/v polyethylene glycol (PEG)200) to mimic the cellular condition. The results indicated that, under molecular crowding conditions, cNDI derivatives were still able to recognize and stabilize G-quadruplex structures based on circular dichroism measurement. The binding affinities were slightly decreased but still comparatively high upon determination by isothermal titration calorimetry and UV-vis absorbance spectroscopy. More interestingly, cNDI derivatives were observed with preference to induce a telomere sequence to form a hybrid G-quadruplex under cation-deficient molecular crowding conditions.





2017 ◽  
Author(s):  
Wonseok Hwang ◽  
Changbong Hyeon

AbstractMolecular motors play key roles in organizing the interior of cells. An efficient motor in cargo transport would travel with a high speed and a minimal error in transport time (or distance) while consuming minimal amount of energy. The travel distance and its variance of motor are, however, physically constrained by energy consumption, the principle of which has recently been formulated into thethermodynamic uncertainty relation. Here, we reinterpret the uncertainty measure (𝒬) defined in the thermodynamic uncertainty relation such that a motor efficient in cargo transport is characterized with a small 𝒬. Analyses on the motility data from several types of molecular motors show that 𝒬 is a nonmonotic function of ATP concentration and load (f). For kinesin-1, 𝒬 is locally minimized at [ATP] ≈ 200μM andf≈ 4 pN. Remarkably, for the mutant with a longer neck-linker this local minimum vanishes, and the energetic cost to achieve the same precision as the wild-type increases significantly, which underscores the importance of molecular structure in transport properties. For the biological motors studied here, their value of 𝒬 is semi-optimized under the cellular condition ([ATP] ≈ 1 mM,f= 0 − 1 pN). We find that among the motors, kinesin-1 at single molecule level is the most efficient in cargo transport.



1991 ◽  
Vol 45 (4) ◽  
pp. 445-464 ◽  
Author(s):  
M. P. Cajaraville ◽  
G. Díez ◽  
I. A. Marigómez ◽  
E. Angulo


Genetics ◽  
1991 ◽  
Vol 129 (2) ◽  
pp. 501-512 ◽  
Author(s):  
S Ronsseray ◽  
M Lehmann ◽  
D Anxolabéhère

Abstract Two P elements, inserted at the cytological site 1A on an X chromosome from an Drosophila melanogaster natural population (Lerik, USSR), were isolated by genetic methods to determine if they are sufficient to cause the P cytotype, the cellular condition that regulates the P family of transposable element. The resulting "Lerik P(1A)" line (abbreviated "Lk-P(1A)") carries only one P element in situ hybridization site but genomic Southern analysis indicates that this site contains two, probably full length, P copies separated by at least one EcoRI cleavage site. Because the Lk-P(1A) line shows some transposase activity, at least one of these two P elements is autonomous. The Lk-P(1A) line fully represses germline P element activity as judged by the GD sterility and snw hypermutability assays; this result shows that the P cytotype can be elicited by only two P element copies. However, the Lk-P(1A) line does not fully repress delta 2-3(99B) transposase activity in the soma, although it fully represses delta 2-3(99B) transposase activity in the germline (delta 2-3(99B) is an in vitro modified P element that produces a high level of transposase activity in both the germline and the soma). The germline regulatory properties of the Lk-P(1A) line are maternally transmitted, even when the delta 2-3(99B) element is used as the source of transposase. By contrast, the partial regulation of delta 2-3(99B) somatic activity is chromosomally inherited. These results suggest that the regulatory P elements of the Lk-P(1A) line are inserted near a germline-specific enhancer.



Genetics ◽  
1989 ◽  
Vol 123 (4) ◽  
pp. 815-824 ◽  
Author(s):  
H M Robertson ◽  
W R Engels

Abstract Activity of the P family of transposable elements in Drosophila melanogaster is regulated primarily by a cellular condition known as P cytotype. It has been hypothesized that P cytotype depends on a P element-encoded repressor of transposition and excision. We provide evidence in support of this idea by showing that two modified P elements, each with lesions affecting the fourth transposase exon, mimic most of the P cytotype effects. These elements were identified by means of two sensitive assays capable of detecting repression by a single P element. One assay makes use of cytotype-dependent gene expression of certain P element insertion mutations at the singed bristle locus. The other measures suppression of transposase activity from the unusually stable genomic P element, delta 2-3(99B), that normally produces transposase in both germinal and somatic tissues. The P cytotype-like effects include suppression of snw germline hypermutability, snw somatic mosaicism, pupal lethality, and gonadal dysgenic sterility. Unlike P cytotype, however, there was no reciprocal cross effect in the inheritance of repression.





Sign in / Sign up

Export Citation Format

Share Document