Transdermal permeation of vasopressin. I. Influence of pH, concentration, shaving and surfactant on in vitro permeation

1989 ◽  
Vol 49 (3) ◽  
pp. 189-197 ◽  
Author(s):  
Partha S. Banerjee ◽  
Wolfgang A. Ritschel
2016 ◽  
Vol 33 (6) ◽  
pp. 487-494 ◽  
Author(s):  
Sané Jansen Van Rensburg ◽  
Anja Franken ◽  
Jeanetta Du Plessis ◽  
Johannes Lodewykus Du Plessis

Workers in precious metals refineries are at risk of exposure to salt compounds of the platinum group metals through inhalation, as well as through the skin. Rhodium salt permeation through the skin has previously been proven using rhodium trichloride (RhCl3) dissolved in synthetic sweat at a pH of 6.5. However, the skin surface pH of refinery workers may be lower than 6.5. The aim of this study was to investigate the influence of pH 6.5 and 4.5 on the in vitro permeation of rhodium through intact Caucasian skin using Franz diffusion cells. A concentration of 0.3 mg mL−1 rhodium was used and analyses were performed using inductively coupled plasma mass spectrometry and inductively coupled plasma optical emission spectrometry. Results indicated a cumulative increase in permeation over 24 h. Rhodium permeation after 12 h was significantly greater at pH 4.5 (1.56 ± 0.24 ng cm−2) than at 6.5 (0.85 ± 0.13 ng cm−2; p = 0.02). At both pH levels, there was a highly significant difference ( p < 0.01) between the mass of rhodium remaining in the skin (1428.68 ± 224.67 ng cm−2 at pH 4.5 and 1029.90 ± 115.96 ng cm−2 at pH 6.5) and the mass that diffused through (0.88 ± 0.17 ng cm−2 at pH 4.5 and 0.62 ± 0.10 ng cm−2 at pH 6.5). From these findings, it is evident that an acidic working environment or low skin surface pH may enhance permeation of rhodium salts, contributing to sensitization and adverse health effects.


Author(s):  
Rakesh Patel ◽  
Hardik Patel ◽  
Ashok Baria

The aim of this work was to prepare and evaluate the topical carbopol gel formulation containing ketoconazole encapsulated liposomes. Ketoconazole loaded liposomes were prepared by thin film hydration technique. The prepared liposomes were incorporated into 1% carbopol gel, and the systems were evaluated for in-vitro drug release, drug retention into skin and in-vitro antifungal activity. The in-vitro permeation of ketoconazole using wistar albino rat skin from liposomal gel was compared with that of plain drug gel and also with plain drug cream containing 2% w/w of ketoconazole. The release of ketoconazole from liposomal gel was much slower than from non liposomal formulations. Gel containing liposomal ketoconazole showed maximum antifungal activity after 30 hours over plain ketoconazole gel and cream formulations.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 335
Author(s):  
Silvia Tampucci ◽  
Antonella Castagna ◽  
Daniela Monti ◽  
Clementina Manera ◽  
Giuseppe Saccomanni ◽  
...  

Chitosan is receiving increasing attention from the food industry for being a biodegradable, non-toxic, antimicrobial biopolymer able to extend the shelf life of, and preserve the quality of, fresh food. However, few studies have investigated the ability of chitosan-based coatings to allow the diffusion of bioactive compounds into the food matrix to improve its nutraceutical quality. This research is aimed at testing whether a hydrophilic molecule (tyrosol) could diffuse from the chitosan-tyrosol coating and cross the tomato peel. To this end, in vitro permeation tests using excised tomato peel and an in vivo application of chitosan-tyrosol coating on tomato fruit, followed by tyrosol quantification in intact fruit, peel and flesh during a seven-day storage at room temperature, were performed. Both approaches demonstrated the ability of tyrosol to permeate across the fruit peel. Along with a decreased tyrosol content in the peel, its concentration within the flesh was increased, indicating an active transfer of tyrosol into this tissue. This finding, together with the maintenance of constant tyrosol levels during the seven-day storage period, is very promising for the use of chitosan formulations to produce functional tomato fruit.


Author(s):  
Chin-Ping Kung ◽  
Bruno C. Sil ◽  
Yanling Zhang ◽  
Jonathan Hadgraft ◽  
Majella E. Lane ◽  
...  

Abstract Amitriptyline, administered orally, is currently one of the treatment options for the management of neuropathic pain and migraine. Because of the physicochemical properties of the molecule, amitriptyline is also a promising candidate for delivery as a topical analgesic. Here we report the dermal delivery of amitriptyline from a range of simple formulations. The first stage of the work required the conversion of amitriptyline hydrochloride to the free base form as confirmed by nuclear magnetic resonance (NMR). Distribution coefficient values were measured at pH 6, 6.5, 7, and 7.4. Solubility and stability of amitriptyline were assessed prior to conducting in vitro permeation and mass balance studies. The compound demonstrated instability in phosphate-buffered saline (PBS) dependent on pH. Volatile formulations comprising of isopropyl alcohol (IPA) and isopropyl myristate (IPM) or propylene glycol (PG) were evaluated in porcine skin under finite dose conditions. Compared with neat IPM, the IPM:IPA vehicles promoted 8-fold and 5-fold increases in the amount of amitriptyline that permeated at 24 h. Formulations containing PG also appear to be promising vehicles for dermal delivery of amitriptyline, typically delivering higher amounts of amitriptyline than the IPM:IPA vehicles. The results reported here suggest that further optimization of topical amitriptyline formulations should be pursued towards development of a product for clinical investigational studies. Graphical abstract


2013 ◽  
Vol 7 (4) ◽  
pp. 327-330 ◽  
Author(s):  
Jayrajsinh I. Sarvaiya ◽  
Gourishankar K. Kapse ◽  
Chintan J. Tank

2008 ◽  
Vol 65 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Ganeshchandra Sonavane ◽  
Keishiro Tomoda ◽  
Akira Sano ◽  
Hiroyuki Ohshima ◽  
Hiroshi Terada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document