Determinants of neuron-sensory receptor cell interaction during development of the inner ear

1986 ◽  
Vol 22 (1-3) ◽  
pp. 265-277 ◽  
Author(s):  
T.R. Van De Water
1989 ◽  
Vol 108 (3-4) ◽  
pp. 227-237 ◽  
Author(s):  
T. R. Van De Water ◽  
V. Galinovic-Schwartz ◽  
R. J. Ruben

Author(s):  
Gordon L. Fain

Sensory Transduction provides a thorough and easily accessible introduction to the mechanisms that each of the different kinds of sensory receptor cell uses to convert a sensory stimulus into an electrical response. Beginning with an introduction to methods of experimentation, sensory specializations, ion channels, and G-protein cascades, it provides up-to-date reviews of all of the major senses, including touch, hearing, olfaction, taste, photoreception, and the “extra” senses of thermoreception, electroreception, and magnetoreception. By bringing mechanisms of all of the senses together into a coherent treatment, it facilitates comparison of ion channels, metabotropic effector molecules, second messengers, and other components of signal pathways that are common themes in the physiology of the different sense organs. With its many clear illustrations and easily assimilated exposition, it provides an ideal introduction to current research for the professional in neuroscience, as well as a text for an advanced undergraduate or graduate-level course on sensory physiology.


1989 ◽  
Vol 107 (5-6) ◽  
pp. 412-412 ◽  
Author(s):  
T. R. Van De Water ◽  
V. Galinovi Schwartz ◽  
R. J. Ruben

1998 ◽  
Vol 79 (4) ◽  
pp. 2235-2239 ◽  
Author(s):  
John S. Oghalai ◽  
Jeffrey R. Holt ◽  
Takashi Nakagawa ◽  
Thomas M. Jung ◽  
Newton J. Coker ◽  
...  

Oghalai, John S., Jeffrey R. Holt, Takashi Nakagawa, Thomas M. Jung, Newton J. Coker, Herman A. Jenkins, Ruth Anne Eatock, and William E. Brownell. Ionic currents and electromotility in inner ear hair cells from humans. J. Neurophysiol. 79: 2235–2239, 1998. The upright posture and rich vocalizations of primates place demands on their senses of balance and hearing that differ from those of other animals. There is a wealth of behavioral, psychophysical, and CNS measures characterizing these senses in primates, but no prior recordings from their inner ear sensory receptor cells. We harvested human hair cells from patients undergoing surgical removal of life-threatening brain stem tumors and measured their ionic currents and electromotile responses. The hair cells were either isolated or left in situ in their sensory epithelium and investigated using the tight-seal, whole cell technique. We recorded from both type I and type II vestibular hair cells under voltage clamp and found four voltage-dependent currents, each of which has been reported in hair cells of other animals. Cochlear outer hair cells demonstrated electromotility in response to voltage steps like that seen in rodent animal models. Our results reveal many qualitative similarities to hair cells obtained from other animals and justify continued investigations to explore quantitative differences that may be associated with normal or pathological human sensation.


2005 ◽  
Vol 68 (4) ◽  
pp. 251-257 ◽  
Author(s):  
Reijiro Okumura ◽  
Kaori Shima ◽  
Takashi Muramatsu ◽  
Kan-ichi Nakagawa ◽  
Masaki Shimono ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Michael R. Deans

Planar polarity describes the organization and orientation of polarized cells or cellular structures within the plane of an epithelium. The sensory receptor hair cells of the vertebrate inner ear have been recognized as a preeminent vertebrate model system for studying planar polarity and its development. This is principally because planar polarity in the inner ear is structurally and molecularly apparent and therefore easy to visualize. Inner ear planar polarity is also functionally significant because hair cells are mechanosensors stimulated by sound or motion and planar polarity underlies the mechanosensory mechanism, thereby facilitating the auditory and vestibular functions of the ear. Structurally, hair cell planar polarity is evident in the organization of a polarized bundle of actin-based protrusions from the apical surface called stereocilia that is necessary for mechanosensation and when stereociliary bundle is disrupted auditory and vestibular behavioral deficits emerge. Hair cells are distributed between six sensory epithelia within the inner ear that have evolved unique patterns of planar polarity that facilitate auditory or vestibular function. Thus, specialized adaptations of planar polarity have occurred that distinguish auditory and vestibular hair cells and will be described throughout this review. There are also three levels of planar polarity organization that can be visualized within the vertebrate inner ear. These are the intrinsic polarity of individual hair cells, the planar cell polarity or coordinated orientation of cells within the epithelia, and planar bipolarity; an organization unique to a subset of vestibular hair cells in which the stereociliary bundles are oriented in opposite directions but remain aligned along a common polarity axis. The inner ear with its complement of auditory and vestibular sensory epithelia allows these levels, and the inter-relationships between them, to be studied using a single model organism. The purpose of this review is to introduce the functional significance of planar polarity in the auditory and vestibular systems and our contemporary understanding of the developmental mechanisms associated with organizing planar polarity at these three cellular levels.


1977 ◽  
Vol 75 (2) ◽  
pp. 339-343 ◽  
Author(s):  
A Flock ◽  
H C Cheung

Receptor cells in the ear are excited through the bending of sensory hairs which project in a bundle from their surface. The individual stereocilia of a bundle contain filaments about 5 nm in diameter. The identity of these filaments has been investigated in the crista ampullaris of the frog and guinea pig by a technique of decoration with subfragment-1 of myosin (S-1). After demembranation with Triton X-100 and incubation with S-1, "arrowhead" formation was observed along the filaments of the stereocilia and their rootlets and also along filaments in the cuticular plate inside the receptor cell. The distance between attached S-1 was 35 nm and arrowheads pointed in towards the cell soma. It is concluded that the filaments of stereocilia are composed of actin.


1965 ◽  
Vol 25 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Åke Flock ◽  
Arndt J. Duvall

The bundle of sensory hairs protruding from the top of each receptor cell in the vestibular and lateral line organs in the teleost fish (burbot) Lota vulgaris is composed of a number of stereocilia and one kinocilium located in the periphery of the bundle. The ultrastructure of the kinocilium and its basal body is described. It is found that the kinocilium is morphologically polarized by the asymmetric arrangement of its component fibers and of the basal body by the presence of a basal foot. Peripheral fibers 5 and 6 of the kinocilium and the basal foot of the basal body are oriented away from the stereocilia; that is, in a direction coinciding with the direction of excitatory stimulation. The findings are discussed in terms of directional sensitivity.


Sign in / Sign up

Export Citation Format

Share Document