cell soma
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 4)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Vol 22 (18) ◽  
pp. 10145
Author(s):  
Giacomo Siano ◽  
Chiara Falcicchia ◽  
Nicola Origlia ◽  
Antonino Cattaneo ◽  
Cristina Di Primio

Tau plays a central role in a group of neurodegenerative disorders collectively named tauopathies. Despite the wide range of diverse symptoms at the onset and during the progression of the pathology, all tauopathies share two common hallmarks, namely the misfolding and aggregation of Tau protein and progressive synaptic dysfunctions. Tau aggregation correlates with cognitive decline and behavioural impairment. The mechanistic link between Tau misfolding and the synaptic dysfunction is still unknown, but this correlation is well established in the human brain and also in tauopathy mouse models. At the onset of the pathology, Tau undergoes post-translational modifications (PTMs) inducing the detachment from the cytoskeleton and its release in the cytoplasm as a soluble monomer. In this condition, the physiological enrichment in the axon is definitely disrupted, resulting in Tau relocalization in the cell soma and in dendrites. Subsequently, Tau aggregates into toxic oligomers and amyloidogenic forms that disrupt synaptic homeostasis and function, resulting in neuronal degeneration. The involvement of Tau in synaptic transmission alteration in tauopathies has been extensively reviewed. Here, we will focus on non-canonical Tau functions mediating synapse dysfunction.


2021 ◽  
Vol 22 (18) ◽  
pp. 10014
Author(s):  
Pamela Rosso ◽  
Elena Fico ◽  
Louise A. Mesentier-Louro ◽  
Viviana Triaca ◽  
Alessandro Lambiase ◽  
...  

Eye-drop recombinant human nerve growth factor (ed-rhNGF) has proved to recover the retina and optic nerve damage in animal models, including the unilateral optic nerve crush (ONC), and to improve visual acuity in humans. These data, associated with evidence that ed-rhNGF stimulates the brain derived neurotrophic factor (BDNF) in retina and cortex, suggests that NGF might exert retino-fugal effects by affecting BDNF and its receptor TrkB. To address these questions, their expression and relationship with the GABAergic and glutamatergic transmission markers, GAD65 and GAD67, vesicular inhibitory amino acid transporter (VGAT), and vesicular glutamate transporters 1 and 2 (VGLUT-1 and VGLUT-2) were investigated in adult ONC rats contralateral and ipsilateral visual cortex (VCx). Ed-rhNGF recovers the ONC-induced alteration of GABAergic and glutamatergic markers in contralateral VCx, induces an upregulation of TrkB, which is positively correlated with BDNF precursor (proBDNF) decrease in both VCx sides, and strongly enhances TrkB+ cell soma and neuronal endings surrounded by GAD65 immuno-reactive afferents. These findings contribute to enlarging the knowledge on the mechanism of actions and cellular targets of exogenously administrated NGF, and suggest that ed-rhNGF might act by potentiating the activity-dependent TrkB expression in GAD+ cells in VCx following retina damage and/or ONC.


2020 ◽  
Vol 8 (22) ◽  
pp. 6286-6300
Author(s):  
Na Zhang ◽  
Junquan Lin ◽  
Jiah Shin Chin ◽  
Kunyu Zhang ◽  
Sing Yian Chew

A laser microdissection-based axotomy model coupled with an aligned electrospun fiber platform was developed, with which the distance of injury site from the cell soma can be precisely controlled.


2019 ◽  
Vol 16 (2) ◽  
pp. 026017 ◽  
Author(s):  
Yao-Chuan Chang ◽  
Dorsa Haji Ghaffari ◽  
Robert H Chow ◽  
James D Weiland

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Mengchen Ye ◽  
Kathryn M Lehigh ◽  
David D Ginty

The development of neurons in the peripheral nervous system is dependent on target-derived, long-range retrograde neurotrophic factor signals. The prevailing view is that target-derived nerve growth factor (NGF), the prototypical neurotrophin, and its receptor TrkA are carried retrogradely by early endosomes, which serve as TrkA signaling platforms in cell bodies. Here, we report that the majority of retrograde TrkA signaling endosomes in mouse sympathetic neurons are ultrastructurally and molecularly defined multivesicular bodies (MVBs). In contrast to MVBs that carry non-TrkA cargoes from distal axons to cell bodies, retrogradely transported TrkA+ MVBs that arrive in cell bodies evade lysosomal fusion and instead evolve into TrkA+ single-membrane vesicles that are signaling competent. Moreover, TrkA kinase activity associated with retrogradely transported TrkA+ MVBs determines TrkA+ endosome evolution and fate. Thus, MVBs deliver long-range retrograde NGF signals and serve as signaling and sorting platforms in the cell soma, and MVB cargoes dictate their vesicular fate.


2017 ◽  
Vol 1 (1) ◽  
Author(s):  
Amrita Pathak ◽  
Bruce D. Carter

Neurotrophins are target-derived factors necessary for mammalian nervous system development and maintenance. They are typically produced by neuronal target tissues and interact with their receptors at axonal endings. Therefore, locally generated neurotrophin signals must be conveyed from the axon back to the cell soma. Retrograde survival signaling by neurotrophin binding to Trk receptors has been extensively studied. However, neurotrophins also bind to the p75 receptor, which can induce apoptosis in a variety of contexts. Selective activation of p75 at distal axon ends has been shown to generate a retrograde apoptotic signal, although the mechanisms involved are poorly understood. The present review summarizes the available evidence for retrograde proapoptotic signaling in general and the role of the p75 receptor in particular, with discussion of unanswered questions in the field. In-depth knowledge of the mechanisms of retrograde apoptotic signaling is essential for understanding the etiology of neurodegeneration in many diseases and injuries.


Genetics ◽  
2015 ◽  
Vol 201 (1) ◽  
pp. 117-141 ◽  
Author(s):  
Stacey L. Edwards ◽  
Logan M. Morrison ◽  
Rosalina M. Yorks ◽  
Christopher M. Hoover ◽  
Soorajnath Boominathan ◽  
...  

2015 ◽  
Vol 113 (4) ◽  
pp. 1041-1050 ◽  
Author(s):  
Jeffrey A. Zahratka ◽  
Paul D. E. Williams ◽  
Philip J. Summers ◽  
Richard W. Komuniecki ◽  
Bruce A. Bamber

Monoamines and neuropeptides modulate neuronal excitability and synaptic strengths, shaping circuit activity to optimize behavioral output. In C. elegans, a pair of bipolar polymodal nociceptors, the ASHs, sense 1-octanol to initiate escape responses. In the present study, 1-octanol stimulated large increases in ASH Ca2+, mediated by L-type voltage-gated Ca2+ channels (VGCCs) in the cell soma and L-plus P/Q-type VGCCs in the axon, which were further amplified by Ca2+ released from intracellular stores. Importantly, 1-octanol-dependent aversive responses were not inhibited by reducing ASH L-VGCC activity genetically or pharmacologically. Serotonin, an enhancer of 1-octanol avoidance, potentiated 1-octanol-dependent ASH depolarization measured electrophysiologically, but surprisingly, decreased the ASH somal Ca2+ transients. These results suggest that ASH somal Ca2+ transient amplitudes may not always be predictive of neuronal depolarization and synaptic output. Therefore, although increases in steady-state Ca2+ can reliably indicate when neurons become active, quantitative relationships between Ca2+ transient amplitudes and neuronal activity may not be as straightforward as previously anticipated.


Sign in / Sign up

Export Citation Format

Share Document