Accuracy of two dental and one skeletal age estimation method in Swedish adolescents

1995 ◽  
Vol 75 (2-3) ◽  
pp. 225-236 ◽  
Author(s):  
Leif Kullman
JKCD ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 9-11
Author(s):  
Sadaf Ambreen

Objectives: To compare Demirjian Dental scoring method with Greulich-Pyle (GP) Skeletal method of age estimation in pubertal children. Materials and Methods: Sample of the study included 267 male healthy subjects of 11-16 years of age group.. Demirjian Scoring system was utilized to evaluate the orthopantomograms to assess their Dental age and the Hand-Wrist radiographs were analyzed to calculate the skeletal age by utilizing GP atlas. Chronological age was obtained from the date of birth of the subject .Both methods were compared with one another and with the chronological age. It was a cross-sectional study and only healthy male subjects without any clinical abnormalities were included in the study. Results: A total of 267 male subjects of 11-16 years of age group were assessed by Demirjian and Greulich Pyle Methods. Both were compared with Chronological Age. Data obtained was statistically analyzed and the Student “t” test was applied in the study population. The mean difference between Chronolgical age and dental age was 0.69years and that of chronological age and skeletal age was 0.87 years. It was observed from dental age assessment that it does not differ much from the skeletal age. Conclusion: It was concluded that Demirjian method of Age Estimation is more precise than Greulich Pyle method of Age Estimation. Furthermore both methods can be used selectively in Medicolegal cases to access bone age which can be easily correlated to chronological age.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daisuke Miyamori ◽  
Takeshi Uemura ◽  
Wenliang Zhu ◽  
Kei Fujikawa ◽  
Takaaki Nakaya ◽  
...  

AbstractThe recent increase of the number of unidentified cadavers has become a serious problem throughout the world. As a simple and objective method for age estimation, we attempted to utilize Raman spectrometry for forensic identification. Raman spectroscopy is an optical-based vibrational spectroscopic technique that provides detailed information regarding a sample’s molecular composition and structures. Building upon our previous proof-of-concept study, we measured the Raman spectra of abdominal skin samples from 132 autopsy cases and the protein-folding intensity ratio, RPF, defined as the ratio between the Raman signals from a random coil an α-helix. There was a strong negative correlation between age and RPF with a Pearson correlation coefficient of r = 0.878. Four models, based on linear (RPF), squared (RPF2), sex, and RPF by sex interaction terms, were examined. The results of cross validation suggested that the second model including linear and squared terms was the best model with the lowest root mean squared error (11.3 years of age) and the highest coefficient of determination (0.743). Our results indicate that the there was a high correlation between the age and RPF and the Raman biological clock of protein folding can be used as a simple and objective forensic age estimation method for unidentified cadavers.


2015 ◽  
Vol 129 (3) ◽  
pp. 609-617 ◽  
Author(s):  
Serenella Serinelli ◽  
Valeria Panebianco ◽  
Milvia Martino ◽  
Sofia Battisti ◽  
Karina Rodacki ◽  
...  

2020 ◽  
Vol 23 (3and4) ◽  
pp. 217-221
Author(s):  
Vaishnavi Chaturvedi ◽  
Leena Kumari ◽  
Nitish Virmani ◽  
Rakesh Dube ◽  
Vijay Kumar ◽  
...  

Author(s):  
George R. Milner ◽  
Jesper L. Boldsen ◽  
Stephen D. Ousley ◽  
Sara M. Getz ◽  
Svenja Weise ◽  
...  

2020 ◽  
Vol 44 (6) ◽  
pp. 870-897
Author(s):  
Maria A Oliveira ◽  
Esteve Llop ◽  
César Andrade ◽  
Cristina Branquinho ◽  
Ronald Goble ◽  
...  

Tsunamis and storms cause considerable coastal flooding, numerous fatalities, destruction of structures, and erosion. The characterization of energy and frequency associated with each wave contribute to the risk assessment in coastal regions. Coastal boulder deposits represent a physical proof of extreme inundation and allow us to study the effects of marine floods further back in time than instrumental and historical records. Age estimation of these deposits is challenging due to lack of materials (such as sand, shells, corals, or organic matter) that retain information about the passage of time. Lichenometry, a simple age estimation method, which is cost-effective, quick to apply, and non-destructive, is here proposed as a solution. A lichen growth model for a calcium-tolerant lichen species was developed and used to estimate the age of a boulder deposit related to extreme marine inundation(s) in Portugal. Estimated ages indicate several very recent events (<700 years) for most of the boulders’ stabilization and agree with results obtained with optically stimulated luminescence of marine sands found beneath boulders. Frequent and recent boulder transport implies a storm-origin for this deposit. These conclusions contrast with other works describing identical deposits that are attributed to paleotsunamis. This study presents a methodology using lichenometry as a successful alternative for age estimation in rocky coastal settings. These results offer an alternative explanation for coastal boulder deposits found on the west coast of Portugal.


2006 ◽  
Vol 63 (9) ◽  
pp. 1674-1681 ◽  
Author(s):  
Hélène de Pontual ◽  
Anne Laure Groison ◽  
Carmen Piñeiro ◽  
Michel Bertignac

Abstract In 2002, a pilot experiment on hake tagging was carried out using methodology specifically developed to catch and handle fish in good condition. By the end of 2005, 36 hake and five tags had been returned to the laboratory (a 3.1% return rate) with a maximum time at liberty of 1066 days. The somatic growth of the recoveries proved to be twofold higher than that expected from published von Bertalanffy growth functions for the species in the Bay of Biscay. The growth underestimation was related to age overestimation, as demonstrated by two independent analyses. The first was based on a blind interpretation of marked otoliths conducted independently by two European experts involved in the routine age estimation of hake. The result shows that the age estimates were neither accurate (inconsistent with oxytetracycline mark positions) nor precise. The second approach compared the predicted otolith growth with the observed growth, and the discrepancy between the two data sets was large. Both types of analyses invalidate the internationally agreed age estimation method and demonstrate a need for further research. Although based on limited data, the study highlights the need to improve biological knowledge of the species in order to improve assessment and management advice. It also strengthens the argument for age validation.


2018 ◽  
Vol 8 (9) ◽  
pp. 1601
Author(s):  
Chaoqun Hong ◽  
Zhiqiang Zeng ◽  
Xiaodong Wang ◽  
Weiwei Zhuang

Image-based age estimation is a challenging task since there are ambiguities between the apparent age of face images and the actual ages of people. Therefore, data-driven methods are popular. To improve data utilization and estimation performance, we propose an image-based age estimation method. Theoretically speaking, the key idea of the proposed method is to integrate multi-modal features of face images. In order to achieve it, we propose a multi-modal learning framework, which is called Multiple Network Fusion with Low-Rank Representation (MNF-LRR). In this process, different deep neural network (DNN) structures, such as autoencoders, Convolutional Neural Networks (CNNs), Recursive Neural Networks (RNNs), and so on, can be used to extract semantic information of facial images. The outputs of these neural networks are then represented in a low-rank feature space. In this way, feature fusion is obtained in this space, and robust multi-modal image features can be computed. An experimental evaluation is conducted on two challenging face datasets for image-based age estimation extracted from the Internet Move Database (IMDB) and Wikipedia (WIKI). The results show the effectiveness of the proposed MNF-LRR.


Sign in / Sign up

Export Citation Format

Share Document