scholarly journals Silicon nitride anti-reflection coatings for CdS/CuInSe2 thin film solar cells by electron beam assisted chemical vapor deposition

Solar Cells ◽  
1985 ◽  
Vol 14 (3) ◽  
pp. 289-291 ◽  
Author(s):  
B.J. Stanbery ◽  
W.S. Chen ◽  
R.A. Mickelsen ◽  
G.J. Collins ◽  
K.A. Emery ◽  
...  
2006 ◽  
Vol 45 (4B) ◽  
pp. 3516-3518 ◽  
Author(s):  
Shui-Yang Lien ◽  
Dong-Sing Wuu ◽  
Hsin-Yuan Mao ◽  
Bing-Rui Wu ◽  
Yen-Chia Lin ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Hsin-Ying Lee ◽  
Ting-Chun Wang ◽  
Chun-Yen Tseng

The microcrystalline p-SiC/i-Si/n-Si thin film solar cells treated with hydrogen plasma were fabricated at low temperature using a CO2laser-assisted plasma enhanced chemical vapor deposition (LAPECVD) system. According to the micro-Raman results, the i-Si films shifted from 482 cm−1to 512 cm−1as the assisting laser power increased from 0 W to 80 W, which indicated a gradual transformation from amorphous to crystalline Si. From X-ray diffraction (XRD) results, the microcrystalline i-Si films with (111), (220), and (311) diffraction were obtained. Compared with the Si-based thin film solar cells deposited without laser assistance, the short-circuit current density and the power conversion efficiency of the solar cells with assisting laser power of 80 W were improved from 14.38 mA/cm2to 18.16 mA/cm2and from 6.89% to 8.58%, respectively.


2006 ◽  
Vol 511-512 ◽  
pp. 46-50 ◽  
Author(s):  
Yali Li ◽  
Yoshie Ikeda ◽  
Toru Saito ◽  
Hajime Shirai

2009 ◽  
Vol 1165 ◽  
Author(s):  
Xiaonan Li

AbstractTin oxide (SnO2) is a durable, inexpensive transparent conducting oxide (TCO) material used for thin-film photovoltaic devices. However, the optical properties of conducting SnO2:F are generally not as good as in other conducting TCO materials such as ITO and ZnO:Al. Our previous analyses indicate that for thin-film solar cells, improving the optical properties of SnO2-coated glass could enhance photon collection and gain up to 10% additional photocurrent. Previously, we showed that some commercial SnO2 samples could have much higher optical absorption than others [2]. In this work, we continue our study on causes that could contribute to the high optical absorption of SnO2 films. The SnO2:F samples are fabricated by low-pressure metal-organic chemical vapor deposition or atmospheric-pressure chemical vapor deposition with tin precursors that includes different amounts of chlorine. Optical, electrical, and compositional analyses were performed. In addition to the free-carrier-introduced optical absorption, the non-active dopant also impacts the optical absorption. Among the SnO2 films fabricated with different precursors, the optical properties show a relationship based on the level of chlorine in the precursors and films. With a low-optical-absorption SnO2 layer, the solar cell could have better photon collection and a higher short-circuit current density.


Sign in / Sign up

Export Citation Format

Share Document