Time-resolved direct-reading spectrochemical analysis using a laser source with medium pulse-repetition rate

1971 ◽  
Vol 26 (11) ◽  
pp. 707-719 ◽  
Author(s):  
R.H. Scott ◽  
A. Strasheim
2007 ◽  
Vol 364-366 ◽  
pp. 533-538
Author(s):  
Qing Hua Lin ◽  
Jin Yun Zhou ◽  
Wen Jing Li

For the 1:1 laser projection lithography system used to achieve large-area patterning with higher resolutions as well as higher throughput, the key parameters such as the laser beam geometry, the numerical aperture of projection lens, the laser source power and the pulse repetition rate are theoretically analyzed. It is expounded the process of uniform exposure in hexagonal beam shape, the advantages and limitations of 1:1 projection owing to numerical apertures deciding the resolution, as well as the cause of choosing larger laser power and pulse repetition rate. Meanwhile, the projection lens for a unit-magnification, refractive imaging system is tentatively simulationdesigned using ZEMAX optical design software. The optimized three-dimensional layout is plotted. For the designed results, the maximum optical path difference is smaller thanλ /4 within entire visual field. The resolution for feature sizes 10μm can be achieved within depth of focus 400μm by evaluating MTF. The maximum field curvature is within 10μm and the maximum distortion is small than 0.000007%. This fulfills the demands in technical specifications.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1553
Author(s):  
Alexey Rybaltovsky ◽  
Evgeniy Epifanov ◽  
Dmitriy Khmelenin ◽  
Andrey Shubny ◽  
Yuriy Zavorotny ◽  
...  

Two approaches are proposed for the synthesis of bimetallic Au/Ag nanoparticles, using the pulsed laser ablation of a target consisting of gold and silver plates in a medium of supercritical carbon dioxide. The differences between the two approaches related to the field of “green chemistry” are in the use of different geometric configurations and different laser sources when carrying out the experiments. In the first configuration, the Ag and Au targets are placed side-by-side vertically on the side wall of a high-pressure reactor and the ablation of the target plates occurs alternately with a stationary “wide” horizontal beam with a laser pulse repetition rate of 50 Hz. In the second configuration, the targets are placed horizontally at the bottom of a reactor and the ablation of their parts is carried out by scanning from above with a vertical “narrow” laser beam with a pulse repetition rate of 60 kHz. The possibility of obtaining Ag/Au alloy nanoparticles is demonstrated using the first configuration, while the possibility of obtaining “core–shell” bimetallic Au/Ag nanoparticles with a gold core and a silver shell is demonstrated using the second configuration. A simple model is proposed to explain the obtained results.


2000 ◽  
Vol 30 (9) ◽  
pp. 783-786 ◽  
Author(s):  
V M Borisov ◽  
A Yu Vinokhodov ◽  
V A Vodchits ◽  
A V El'tsov ◽  
A S Ivanov

Sign in / Sign up

Export Citation Format

Share Document