The application of neural networks in self-tuning constant force control

1996 ◽  
Vol 36 (1) ◽  
pp. 17-31 ◽  
Author(s):  
Shiuh-Jer Huang ◽  
Kuo-Ching Chiou
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shijie Dai ◽  
Yufeng Zhao ◽  
Wenbin Ji ◽  
Jiaheng Mu ◽  
Fengbao Hu

Purpose This paper aims to present a control method to realize the constant force grinding of automobile wheel hub. Design/methodology/approach A constant force control strategy combined by extended state observer (ESO) and backstepping control is proposed. ESO is used to estimate the total disturbance to improve the anti-interference and stability of the system and Backstepping control is used to improve the response speed of the system. Findings The simulation and grinding experimental results show that, compared with the proportional integral differential control and active disturbance rejection control, the designed controller can improve the dynamic response performance and anti-interference ability of the system and can quickly track the expected force and improve the grinding quality of the hub surface. Originality/value The main contribution of this paper lies in the proposed of a new constant force control strategy, which significantly improved the stability and precision of grinding force.


2021 ◽  
Vol 68 (2) ◽  
pp. 1525-1536 ◽  
Author(s):  
Zhihao Xu ◽  
Shuai Li ◽  
Xuefeng Zhou ◽  
Songbin Zhou ◽  
Taobo Cheng ◽  
...  

Author(s):  
Guohong Xie ◽  
Ji Zhao ◽  
Xin Wang ◽  
Huan Liu ◽  
Yan Mu ◽  
...  

In the abrasive belt grinding process, there are factors affecting the machining stability, efficiency, and quality. Based on the analysis of the grinding process, the normal force in the contact area between the abrasive belt and the workpiece is a major factor. By comparing constant force and non-constant force grinding, the results imply that keeping the grinding force constant will achieve desired material removal and better surface quality. The phenomenon of over- and under-cutting of the workpieces can also be avoided by a constant normal force. In this article, a controllable and flexible belt grinding mechanism accompanied with a mechanical decoupling control strategy is built and tested. Afterward, a detailed comparison is made between the traditional force-position coupling system and the proposed decoupling control system. The proposed control system suppresses the interference between the position and force control systems. The contact force is directly measured and controlled without detecting the position of other components in the tool system. The complexity of the control system is thereby reduced. Finally, several grinding experiments are carried out. The standard deviation and coefficient of variation of the measured normal force are kept within 0.25 and 0.02, respectively. The experiment results reveal that the mechanical decoupling system performs well in force control compared with the traditional force-position coupling system. In addition, the surface roughness Ra < 0.4 μm, the surface quality of the workpiece is improved significantly with the constant force controller.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1635 ◽  
Author(s):  
Tie Zhang ◽  
Ye Yu ◽  
Yanbiao Zou

To improve the processing quality and efficiency of robotic belt grinding, an adaptive sliding-mode iterative constant-force control method for a 6-DOF robotic belt grinding platform is proposed based on a one-dimension force sensor. In the investigation, first, the relationship between the normal and the tangential forces of the grinding contact force is revealed, and a simplified grinding force mapping relationship is presented for the application to one-dimension force sensors. Next, the relationship between the deformation and the grinding depth during the grinding is discussed, and a deformation-based dynamic model describing robotic belt grinding is established. Then, aiming at an application scene of robot belt grinding, an adaptive iterative learning method is put forward, which is combined with sliding mode control to overcome the uncertainty of the grinding force and improve the stability of the control system. Finally, some experiments were carried out and the results show that, after ten times iterations, the grinding force fluctuation becomes less than 2N, the mean value, standard deviation and variance of the grinding force error’s absolute value all significantly decrease, and that the surface quality of the machined parts significantly improves. All these demonstrate that the proposed force control method is effective and that the proposed algorithm is fast in convergence and strong in adaptability.


2000 ◽  
Vol 14 (3) ◽  
pp. 153-168 ◽  
Author(s):  
Kazuo Kiguchi ◽  
Keigo Watanabe ◽  
Kiyotaka Izumi ◽  
Toshio Fukuda

Sign in / Sign up

Export Citation Format

Share Document