Experimental techniques for the measurement of radiative and total heat transfer in gas fluidized beds: A review

1989 ◽  
Vol 2 (3) ◽  
pp. 350-364 ◽  
Author(s):  
S.C. Saxena ◽  
K.K. Srivastava ◽  
R. Vadivel
2002 ◽  
Vol 124 (1) ◽  
pp. 34-39 ◽  
Author(s):  
Qiao He ◽  
Franz Winter ◽  
Ji-Dong Lu

A general numerical model is presented here to describe the complex fluid dynamics and the heat transfer process in high-temperature circulating fluidized beds (CFBs). The core-wall concept is used to describe the gas-solid flow in the dilute phase section of CFBs. The variation of the thickness of the wall layer along the height direction is considered in the fluid dynamic model in order to approach the practical conditions. Three components of heat transfer, i.e., the particle-convective heat transfer, the gas-convective heat transfer, and the radiative heat transfer, and their contributions to the total heat transfer coefficient are investigated. The influences of some operating parameters on the total heat transfer and its components are predicted. Detailed information about the mechanism of heat transfer is discussed. The radiative heat transfer accounts for about 30∼60% of the total heat transfer in high temperature CFBs. It gradually increases along the height direction of the furnace. When the contribution of particle convection increases, the contribution of gas convection decreases, and vice versa. Particle size shows a significant effect on the radiative heat transfer and the convective heat transfer. High bed and wall temperatures will primarily increase the radiative heat transfer.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 200
Author(s):  
Lingyun Zhang ◽  
Yupeng Hu ◽  
Minghai Li

This study examines the combined heat transfer by thermal conduction, natural convection and surface radiation in the porous char layer that is formed from the intumescent coating under fire. The results show that some factors, such as the Rayleigh number, conductivity ratio, emissivity, radiation–conduction number, void fraction and heating mode have a certain effect on the total heat transfer. In addition, the natural convection of the air in the cavity always inhibits surface radiation among the solid walls and thermal conduction, and the character of the total heat transfer is the competition result of the three heat transfer mechanisms.


2018 ◽  
Vol 22 (2) ◽  
pp. 899-897
Author(s):  
Xiaohong Gui ◽  
Xiange Song ◽  
Baisheng Nie

The effects of contact angle and superheat on thin-film thickness and heat flux distribution occurring in a rectangle microgroove are numerically simulated. Accordingly, physical, and mathematical models are built in detail. Numerical results indicate that meniscus radius and thin-film thickness increase with the improvement of contact angle. The heat flux distribution in the thin-film region increases non-linearly as the contact angle decreases. The total heat transfer through the thin-film region increases with the improvement of superheat, and decreases as the contact angle increases. When the contact angle is equal to zero, the heat transfer in the thin-film region accounts for more than 80% of the total heat transfer. Intensive evaporation in the thin-film region plays a key role in heat transfer for the rectangle capillary microgroove. The liquid with higher wetting performance is more capable of playing the advantages of higher intensity heat transfer in thin- film region. The current investigation will result in a better understanding of thin- -film evaporation and its effect on the effective thermal conductivity in the rectangle microgroove.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Jianliang Xue ◽  
Qinqin Cui ◽  
Jie Ming ◽  
Yu Bai ◽  
Lin Li

Theoretical investigations on thermal properties of multieffect distillation (MED) are presented to approach lower capital costs and more distillated products. A mathematical model, based on the energy and mass balance, is developed to (i) evaluate the influences of variations in key parameters (effect numbers, evaporation temperature in last effect, and feed salinity) on steam consumption, gained output ratio (GOR), and total heat transfer areas of MED and (ii) compare two operation modes (backward feed (BF) and forward feed (FF) systems). The result in the first part indicated that GOR and total heat transfer areas increased with the effect numbers. Also, higher effect numbers result in the fact that the evaporation temperature in last effect has slight influence on GOR, while it influences the total heat transfer areas remarkably. In addition, an increase of feed salinity promotes the total heat transfer areas but reduces GOR. The analyses in the second part indicate that GOR and total heat transfer areas of BF system are higher than those in FF system. One thing to be aware of is that the changes of steam consumption can be omitted, considering that it shows an opposite trend to GOR.


2005 ◽  
Vol 127 (2) ◽  
pp. 179-188 ◽  
Author(s):  
Devashish Shrivastava ◽  
Benjamin McKay ◽  
Robert B. Roemer

Counter-current (vessel–vessel) heat transfer has been postulated as one of the most important heat transfer mechanisms in living systems. Surprisingly, however, the accurate quantification of the vessel–vessel, and vessel–tissue, heat transfer rates has never been performed in the most general and important case of a finite, unheated/heated tissue domain with noninsulated boundary conditions. To quantify these heat transfer rates, an exact analytical expression for the temperature field is derived by solving the 2-D Poisson equation with uniform Dirichlet boundary conditions. The new results obtained using this solution are as follows: first, the vessel–vessel heat transfer rate can be a large fraction of the total heat transfer rate of each vessel, thus quantitatively demonstrating the need to accurately model the vessel–vessel heat transfer for vessels imbedded in tissues. Second, the vessel–vessel heat transfer rate is shown to be independent of the source term; while the heat transfer rates from the vessels to the tissue show a significant dependence on the source term. Third, while many previous studies have assumed that (1) the total heat transfer rate from vessels to tissue is zero, and/or (2) the heat transfer rates from paired vessels (of different sizes and at different temperatures) to tissue are equal to each other the current analysis shows that neither of these conditions is met. The analytical solution approach used to solve this two vessels problem is general and can be extended for the case of “N” arbitrarily located vessels.


Sign in / Sign up

Export Citation Format

Share Document