The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants

1994 ◽  
Vol 11 (1-4) ◽  
pp. 41-49 ◽  
Author(s):  
A.J.M. Baker ◽  
S.P. McGrath ◽  
C.M.D. Sidoli ◽  
R.D. Reeves
Keyword(s):  
2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
G. U. Chibuike ◽  
S. C. Obiora

Soils polluted with heavy metals have become common across the globe due to increase in geologic and anthropogenic activities. Plants growing on these soils show a reduction in growth, performance, and yield. Bioremediation is an effective method of treating heavy metal polluted soils. It is a widely accepted method that is mostly carried outin situ; hence it is suitable for the establishment/reestablishment of crops on treated soils. Microorganisms and plants employ different mechanisms for the bioremediation of polluted soils. Using plants for the treatment of polluted soils is a more common approach in the bioremediation of heavy metal polluted soils. Combining both microorganisms and plants is an approach to bioremediation that ensures a more efficient clean-up of heavy metal polluted soils. However, success of this approach largely depends on the species of organisms involved in the process.


Author(s):  
Mo-Ming Lan ◽  
Chong Liu ◽  
Shi-Jiao Liu ◽  
Rong-Liang Qiu ◽  
Ye-Tao Tang

In-situ remediation of heavy-metal-contaminated soil in farmland using phytostabilization combined with soil amendments is a low-cost and effective technology for soil pollution remediation. In this study, coconut shell biochar (CB, 0.1% and 0.5%), organic fertilizer (OF, 3.0%), and Fe-Si-Ca material (IS, 3.0%) were used to enhance the phytostabilization effect of ramie (Boehmeria nivea L.) on Cd and Pb in highly polluted soils collected at Dabaoshan (DB) and Yangshuo (YS) mine sites. Results showed that simultaneous application of CB, OF, and IS amendments (0.1% CB + 3.0% OF + 3.0% IS and 0.5% CB + 3.0% OF + 3.0% IS, DB-T5 and DB-T6) could significantly increase soil pH, reduce the concentrations of CaCl2-extractable Cd and Pb, and increase the contents of Ca, P, S, and Si in DB soil. Under these two treatments, the growth of ramie was significantly improved, its photosynthesis was enhanced, and its levels of Cd and Pb were reduced, in comparison with the control (DB-CK). After applying DB-T5 and DB-T6, the concentrations of Cd and Pb in roots were decreased by 97.7–100% and 64.6–77.9%, while in shoots they were decreased by up to 100% and 92.9–100%, respectively. In YS-T4 (0.5% CB + 3.0% OF), the concentrations of Cd and Pb in roots were decreased by 39.5% and 46.0%, and in shoots they were decreased by 44.7% and 88.3%. We posit that phytostabilization using ramie and amendments could reduce the Cd and Pb bioavailability in the soil mainly through rhizosphere immobilization and plant absorption. In summary, this study suggests that the use of tolerant plant ramie and simultaneous application of coconut shell biochar, organic fertilizer, and Fe-Si-Ca materials is an effective stabilization strategy that can reduce Cd and Pb availabilities in soil. Ultimately, this strategy may reduce the exposure risk of crops to heavy metal pollution in farmland.


2017 ◽  
Vol 18 ◽  
pp. 01022
Author(s):  
Săndica Liliana Gherghe ◽  
Ildiko Anger ◽  
Georgiana Moise ◽  
Roxana Trusca

This article presents the characterization of the Romanian bentonite and fly ash, using different techniques: FAAS, XRD, FT-IR, SEM and EDAX and their evaluation as sorbents for heavy metals immobilization in polluted soils coming from mining and metallurgical activities. The applicability of bentonite and fly ash for Pb (II) and Zn (II) immobilization was studied using aqueous solutions of these metals. The influence of the pH and contact time were studied. The results shown that the Romanian bentonite and fly ash could be used for Pb (II) and Zn (II) immobilization in polluted soils from brownfields.


2017 ◽  
Vol 18 ◽  
pp. 01022
Author(s):  
Săndica Liliana Gherghe ◽  
Ildiko Anger ◽  
Georgiana Moise ◽  
Roxana Trusca

Author(s):  
S.K. Gupta ◽  
T. Herren ◽  
K. Wenger ◽  
R. Krebs ◽  
T. Hari

2020 ◽  
Vol 192 ◽  
pp. 110260 ◽  
Author(s):  
Souhir Abdelkrim ◽  
Salwa Harzalli Jebara ◽  
Omar Saadani ◽  
Ghassen Abid ◽  
Wael Taamalli ◽  
...  

2000 ◽  
Vol 42 (7-8) ◽  
pp. 335-343 ◽  
Author(s):  
S. Shiba ◽  
S. Hino ◽  
Y. Hirata ◽  
T. Seno

The operational variables of electrokinetic remediation have not been cleared yet, because this method is relatively new and is an innovative technique in the aquifer remediation. In order to investigate the operational variables of the electrokinetic remediation, a mathematical model has been constructed based on the physico chemical mass transport process of heavy metals in pore water of contaminated aquifer. The transport of the heavy metals is driven not only by the hydraulic flow due to the injection of the purge water but also by the electromigration due to the application of the electric potential gradient. The electric potential between anode and cathode is the important operational variable for the electrokinetic remediation. From the numerical simulations with use of this model it is confirmed that the remediation starts from the up stream anode and gradually the heavy metal is transported to the down stream cathode and drawn out through the purge water.


Sign in / Sign up

Export Citation Format

Share Document