A new tensile test on in situ solidified notched specimens: hot ductility analysis of continuous casting steels

1992 ◽  
Vol 32 (1-2) ◽  
pp. 325-334 ◽  
Author(s):  
P. Deprez ◽  
J.P. Bricout ◽  
J. Oudin
1994 ◽  
Vol 34 (6) ◽  
pp. 528-535 ◽  
Author(s):  
Thierry Revaux ◽  
Pascal Deprez ◽  
Jean-Paul Bricout ◽  
Jérôme Oudin

2021 ◽  
pp. 111180
Author(s):  
Keli Liu ◽  
Junsheng Wang ◽  
Bing Wang ◽  
Pengcheng Mao ◽  
Yanhong Yang ◽  
...  

Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1047
Author(s):  
Wenxiang Jiang ◽  
Xiaoyi Ren ◽  
Jinghao Zhao ◽  
Jianli Zhou ◽  
Jinyao Ma ◽  
...  

An in situ scanning electron microscope (SEM) tensile test for Ni-based single-crystal superalloy was carried out at 1000 °C. The stress displacement was obtained, and the yield strength and tensile strength of the superalloy were 699 MPa and 826 MPa, respectively. The crack propagation process, consisting of Model I crack and crystallographic shearing crack, was determined. More interestingly, the crack propagation path and rate affected by eutectics was directly observed and counted. Results show that the coalescence of the primary crack and second microcrack at the interface of a γ/γ′ matrix and eutectics would make the crack propagation rate increase from 0.3 μm/s to 0.4 μm/s. On the other hand, crack deflection decreased the rate to 0.05 μm/s. Moreover, movement of dislocations in front of the crack was also analyzed to explain the different crack propagation behavior in the superalloy.


2015 ◽  
Vol 87 (7) ◽  
pp. 871-879 ◽  
Author(s):  
Martin Lückl ◽  
Ozan Caliskanoglu ◽  
Sergiu Ilie ◽  
Jakob Six ◽  
Ernst Kozeschnik

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jung Gi Kim ◽  
Jae Wung Bae ◽  
Jeong Min Park ◽  
Wanchuck Woo ◽  
Stefanus Harjo ◽  
...  

Metals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 126 ◽  
Author(s):  
Jiabin Hou ◽  
Lin Gao ◽  
Guorong Cui ◽  
Wenzhen Chen ◽  
Wencong Zhang ◽  
...  

In situ synthesized TiB whiskers (TiBw) reinforced Ti-15Mo-3Al-2.7Nb-0.2Si alloys were successfully manufactured by pre-sintering and canned hot extrusion via adding TiB2 powders. During pre-sintering, most TiB2 were reacted with Ti atoms to produce TiB. During extrusion, the continuous dynamic recrystallization (CDRX) of β grains was promoted with the rotation of TiBw, and CDRXed grains were strongly inhibited by TiBw with hindering dislocation motion. Eventually, the grain sizes of composites decreased obviously. Furthermore, the stress transmitted from the matrix to TiBw for strengthening in a tensile test, besides grain refinement. Meanwhile, the fractured TiBw and microcracks around them contributed to fracturing.


2011 ◽  
Vol 194-196 ◽  
pp. 150-156 ◽  
Author(s):  
Fang Dong ◽  
Cheng Su ◽  
Yuan Yuan Bai

Hot-ductility tests of the microalloyed Q345B structural steel were performed in a tensile machine of Gleeble-1500D at different strain rates of 1.5•10-3/s 、2.5•10-3/s and 2•10-2/s and at temperature range from 1300°C to 700°C(Δ T=100°C ), which are close to the continuous casting condition of steel. Fracture surfaces were examined using a scanning electron microscope; it was found that the hot decrease as strain rate decrease, because the void growth mechanism predominates over void nucleation, giving time for nucleation cracks to grow. The minimum ductility was found at about 800°C for the strain rates of 1.5•10-3/s and 2.5•10-3/s, and the fracture was intergranular. The steel has good plasticity in temperature range from 1200°C to 900°C which is suitable for straighten operation.


Sign in / Sign up

Export Citation Format

Share Document