Characteristics of Hot Ductility and Fracture in Micro-Alloyed Q345B Structural Steel

2011 ◽  
Vol 194-196 ◽  
pp. 150-156 ◽  
Author(s):  
Fang Dong ◽  
Cheng Su ◽  
Yuan Yuan Bai

Hot-ductility tests of the microalloyed Q345B structural steel were performed in a tensile machine of Gleeble-1500D at different strain rates of 1.5•10-3/s 、2.5•10-3/s and 2•10-2/s and at temperature range from 1300°C to 700°C(Δ T=100°C ), which are close to the continuous casting condition of steel. Fracture surfaces were examined using a scanning electron microscope; it was found that the hot decrease as strain rate decrease, because the void growth mechanism predominates over void nucleation, giving time for nucleation cracks to grow. The minimum ductility was found at about 800°C for the strain rates of 1.5•10-3/s and 2.5•10-3/s, and the fracture was intergranular. The steel has good plasticity in temperature range from 1200°C to 900°C which is suitable for straighten operation.

2012 ◽  
Vol 457-458 ◽  
pp. 270-273
Author(s):  
Yi You Tu ◽  
Guo Zhong Li

Effect of superheat and initial rolling temperature on the morphology and distribution of sulfide in non quenched and tempered free cutting steel 30MnVS has been studied by optical microscope and scanning electron microscope. Results show that proper superheat and initial rolling temperature can turn rod-shaped sulfide into massive or globular sulfide,to alleviate sulfide segregation and pro-eutectoid ferrite distribution along the boundary of pearlite clusters in 30MnVS , increase the intragranular ferrite content and optimize the structure of continuous casting slab.


2009 ◽  
Vol 69 (4) ◽  
pp. 1059-1071 ◽  
Author(s):  
M. Garcia ◽  
C. Odebrecht

The detailed description of rarely recorded Thalassiosira species in Brazil is presented with light microscope (LM) and scanning electron microscope (SEM) illustrations. A total of 78 phytoplankton net samples (20 µm) collected between the years 2000 and 2006 in coastal waters of southern Brazilian, Cassino Beach and the estuary of Lagoa dos Patos, were studied in cleaned material using the Axiovert Zeiss LM and Jeol 6060 SEM. Water temperature and salinity of samples and six species are presented: Thalassiosira endoseriata, T. hendeyi, T. lundiana, T. minuscula, T. oceanica and T. wongii. Two species, Thalassiosira hendeyi and T. endoseriata were the most common being observed in all seasons at Cassino Beach in a wide temperature range (10-26 ºC), while only sporadically in the estuary of Lagoa dos Patos. Thalassiosira endoseriata, T. lundiana, T. oceanica and T. wongii are for the first time reported in Brazilian coastal waters. The latter two species, rarely recorded in the world, are fully illustrated based on Brazilian material.


2018 ◽  
Vol 913 ◽  
pp. 150-156 ◽  
Author(s):  
Sha Zhang ◽  
An Wen Zhang ◽  
Wei Yang Wang ◽  
Xin Xin ◽  
Kai Zhang

The segregation and precipitation behavior of phosphoruswas studied in aNi-Fe-Cr base wroughtsuperalloy. The precipitation behavior of phosphides in the alloy contained 0.025% Pwas examined after soaking at 750-1080°C to determine the precipitation temperature range of MNP-type phosphide. The microstructuresunder these various conditions wereinvestigated by scanning electron microscope(SEM) and energy dispersive spectroscopy (EDS). The precipitation temperature of the phosphide in the alloy was determined to be in the range of 850-1040 °C and the precipitation peak temperature was around 980°C.In addition, the melting temperatureof the phosphide was determined to be between 1200 °C and 1250 °C. The current results indicate the tendency of phosphorus segregated at grain boundaries.


2017 ◽  
Vol 17 (3) ◽  
pp. 149-154
Author(s):  
M. Zaheri ◽  
S.E. Vahdat

Abstract Different methods are used for production of bronze bearings. In terms of technical specifications, the success of each of these methods depends on the bond’s strength and in terms of economic, the production method is important. In this study, the aim is to study the strength and microstructure of steel-bronze thrust bearing bond that has been produced through the casting using pre-mold. In this study, in order to bond, the raw metals are chemically washed with sulfuric acid solution for five minutes at first. Then, the molten bronze SAE660 is cast in a structural steel S235JR pre-mold. The bond’s strength has been measured using the shear test three times; the measurement of bond’s length has been done using field emission scanning electron microscope (FESEM). The results indicate that the strength of the bond is at least 94.8 MPa and bond’s length is 0.45 micrometers. Therefore, this method was successful for trust bearing application.


2004 ◽  
Vol 261-263 ◽  
pp. 363-368 ◽  
Author(s):  
Xi Shu Wang ◽  
Xi Qiao Feng ◽  
Xing Wu Guo

This work focuses on the damage mechanisms and the resulting failure behavior of structures made of anodized coatings on magnesium alloy substrates. The failure of anodized coatings of about 30µm thickness on AZ91D substrates was investigated under three-points bending loading with online scanning electron microscope (SEM) observations. The obtained SEM images show that void nucleation and crack initiation occurs mainly at sites near the coating-substrate interface, and the evolutionary microcracking damage diffuses from the interface to the coating surface and also to the bulk substrate with the increasing in loading.


1991 ◽  
Vol 225 ◽  
Author(s):  
C-K. Hu ◽  
P. S. Ho ◽  
M. B. Small ◽  
K. Kelleher

ABSTRACTThe electromigration drift velocity of Al in Al(3wt.% Si), Al(2wt.%Cu), and Al(2wt.%Cu,3wt.%Si) was measured in a temperature range 133 to 220 °C with current densities of 1.0 to 1.5×106A/cm2. In Al(3wt.% Si), a significant Al depletion at the cathode end and accumulation at the anode end of stripe were observed within a few hours at 1.5×106A/cm2 and 200°C. In addition, local hillocks and voids along the metal lines were observed. For Al(Cu,Si), the Al drift velocity was slowed down by Cu addition. The majority of hillocks started to grow at a distance about 6 μm away from the cathode end with current density of 1.5×106 A/cm2. The drift velocity of Al in Al(Cu,Si) was found to be a function of time starting with an initial low value and increasing to a an final steady-state value. The behavior was attributed to the migration of Cu and dissolution of Al2Cu precipitates. The activation energies of the depletion 3 Aμm of Al(2%,Cu, 3%Si) was determined to be 0.90±02 eV. The dissolution and growth of A12Cu in the tested samples of Ti/Al(2%Cu)/Ti/TiN were observed using the scanning electron microscope and an electron microprobe.


Author(s):  
R. E. Ferrell ◽  
G. G. Paulson

The pore spaces in sandstones are the result of the original depositional fabric and the degree of post-depositional alteration that the rock has experienced. The largest pore volumes are present in coarse-grained, well-sorted materials with high sphericity. The chief mechanisms which alter the shape and size of the pores are precipitation of cementing agents and the dissolution of soluble components. Each process may operate alone or in combination with the other, or there may be several generations of cementation and solution.The scanning electron microscope has ‘been used in this study to reveal the morphology of the pore spaces in a variety of moderate porosity, orthoquartzites.


Author(s):  
C. T. Nightingale ◽  
S. E. Summers ◽  
T. P. Turnbull

The ease of operation of the scanning electron microscope has insured its wide application in medicine and industry. The micrographs are pictorial representations of surface topography obtained directly from the specimen. The need to replicate is eliminated. The great depth of field and the high resolving power provide far more information than light microscopy.


Author(s):  
K. Shibatomi ◽  
T. Yamanoto ◽  
H. Koike

In the observation of a thick specimen by means of a transmission electron microscope, the intensity of electrons passing through the objective lens aperture is greatly reduced. So that the image is almost invisible. In addition to this fact, it have been reported that a chromatic aberration causes the deterioration of the image contrast rather than that of the resolution. The scanning electron microscope is, however, capable of electrically amplifying the signal of the decreasing intensity, and also free from a chromatic aberration so that the deterioration of the image contrast due to the aberration can be prevented. The electrical improvement of the image quality can be carried out by using the fascionating features of the SEM, that is, the amplification of a weak in-put signal forming the image and the descriminating action of the heigh level signal of the background. This paper reports some of the experimental results about the thickness dependence of the observability and quality of the image in the case of the transmission SEM.


Sign in / Sign up

Export Citation Format

Share Document