Atmospheric boundary layer measurements over sea ice in the Sea of Okhotsk

1991 ◽  
Vol 2 (1-2) ◽  
pp. 63-79 ◽  
Author(s):  
Kunio Shirasawa ◽  
Masaaki Aota
2021 ◽  
Author(s):  
Matthew Z. Williams ◽  
Melissa Gervais ◽  
Chris E. Forest

2011 ◽  
Vol 140 (1) ◽  
pp. 105-123 ◽  
Author(s):  
Eeva Mäkiranta ◽  
Timo Vihma ◽  
Anna Sjöblom ◽  
Esa-Matti Tastula

2011 ◽  
Vol 52 (57) ◽  
pp. 1-8 ◽  
Author(s):  
Yasushi Fukamachi ◽  
Kay I. Ohshima ◽  
Yuji Mukai ◽  
Genta Mizuta ◽  
Masaaki Wakatsuchi

AbstractIn the southwestern part of the Sea of Okhotsk off Hokkaido, sea-ice drift characteristics are investigated using the ice and water velocities obtained from a moored upward-looking acoustic Doppler current profiler (ADCP) during the winters of 1999–2001. Using hourly-mean values of these data along with the wind data measured at a nearby coastal station, the wind factor and turning angle of the relative velocity between the ice and water velocities with respect to the wind are calculated assuming free drift under various conditions. Since the simultaneous sea-ice draft data are also available from a moored ice-profiling sonar (IPS), we examine the dependence of drift characteristics on ice thickness for the first time. As ice thickness increases and wind decreases, the wind factor decreases and the turning angle increases, as predicted by the theory of free drift. This study clearly shows the utility of the moored ADCP measurement for studying sea-ice drift, especially with the simultaneous IPS measurement for ice thickness, which cannot be obtained by other methods.


2021 ◽  
Author(s):  
Marta Wenta ◽  
Agnieszka Herman

<p>The ongoing development of NWP (Numerical Weather Prediction) models and their increasing horizontal resolution have significantly improved forecasting capabilities. However, in the polar regions models struggle with the representation of near-surface atmospheric properties and the vertical structure of the atmospheric boundary layer (ABL) over sea ice. Particularly difficult to resolve are near-surface temperature, wind speed, and humidity, along with diurnal changes of those properties. Many of the complex processes happening at the interface of sea ice and atmosphere, i.e. vertical fluxes, turbulence, atmosphere - surface coupling are poorly parameterized or not represented in the models at all. Limited data coverage and our poor understanding of the complex processes taking place in the polar ABL limit the development of suitable parametrizations. We try to contribute to the ongoing effort to improve the forecast skill in polar regions through the analysis of unmanned aerial vehicles (UAVs) and automatic weather station (AWS) atmospheric measurements from the coastal area of Bothnia Bay (Wenta et. al., 2021), and the application of those datasets for the analysis of regional NWP models' forecasts. </p><p>Data collected during HAOS (Hailuoto Atmospheric Observations over Sea ice) campaign (Wenta et. al., 2021) is used for the evaluation of regional NWP models results from AROME (Applications of Research to Operations at Mesoscale) - Arctic, HIRLAM (High Resolution Limited Area Model) and WRF (Weather Research and Forecasting). The presented analysis focuses on 27 Feb. 2020 - 2 Mar. 2020, the time of the HAOS campaign, shortly after the formation of new, thin sea ice off the westernmost point of Hailuoto island.  Throughout the studied period weather conditions changed from very cold (-14℃), dry and cloud-free to warmer (~ -5℃), more humid and opaquely cloudy. We evaluate models’ ability to correctly resolve near-surface temperature, humidity, and wind speed, along with vertical changes of temperature and humidity over the sea ice. It is found that generally, models struggle with an accurate representation of surface-based temperature inversions, vertical variations of humidity, and temporal wind speed changes. Furthermore, a WRF Single Columng Model (SCM) is launched to study whether specific WRF planetary boundary layer parameterizations (MYJ, YSU, MYNN, QNSE), vertical resolution, and more accurate representation of surface conditions increase the WRF model’s ability to resolve the ABL above sea ice in the Bay of Bothnia. Experiments with WRF SCM are also used to determine the possible reasons behind model’s biases. Preliminary results show that accurate representation of sea ice conditions, including thickness, surface temperature, albedo, and snow coverage is crucial for increasing the quality of NWP models forecasts. We emphasize the importance of further development of parametrizations focusing on the processes at the sea ice-atmosphere interface.</p><p> </p><p>Reference:</p><p>Wenta, M., Brus, D., Doulgeris, K., Vakkari, V., and Herman, A.: Winter atmospheric boundary layer observations over sea ice in the coastal zone of the Bay of Bothnia (Baltic Sea), Earth Syst. Sci. Data, 13, 33–42, https://doi.org/10.5194/essd-13-33-2021, 2021. </p><p><br><br><br><br><br><br></p>


1997 ◽  
Vol 25 ◽  
pp. 423-428
Author(s):  
Douglas M. Smith ◽  
Claire Cooper ◽  
Duncan J. Wingham ◽  
Seymour W. Laxon

The amount of Arctic sea ice predicted by the Hadley Centre Global Cilimate Model (GCM) is evaluated using 15 years of passive-microwave data. While the Hadley model reproduces the seasonal cycle reasonably well, it underestimates the total area of sea ice by more than 3 × 106km2for most of the year. In the winter months, most of the underestimate in ice area results from the prediction of far too little ice in Hudson Bay and the Sea of Okhotsk, leading to an excess of up to 0.2 PW heat input to the atmosphere from Hudson Bay alone. The surface-energy budget of Hudson Bay is investigated using a mixture of surface observations (POLES), satellite data (ATSR, SSM/I and ISCCP) and output from the Goddard Data Assimilation Office analysis. Flux adjustments of the order of 200 Wm−2, resulting from anomalously high sea-surface temperatures in the Levitus (1982) climatology, are found to be the cause of the model’s underestimation of sea ice in both Hudson Bay and the Sea of Okhotsk. The fact that flux adjustments based on an inaccurate climatology will produce errors, even if the model physics is correct, underlines the need both for improved climatologies and for models accurate enough not to require flux adjustment.


Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 654
Author(s):  
Marta Wenta ◽  
Agnieszka Herman

Sea ice fragmentation results in the transformation of the surface from relatively homogeneous to highly heterogeneous. Atmospheric boundary layer (ABL) rapidly responds to those changes through a range of processes which are poorly understood and not parametrized in numerical weather prediction (NWP) models. The aim of this work is to increase our understanding and develop parametrization of the ABL response to different floe size distributions (FSD). The analysis is based on the results of simulations with the Weather Research and Forecasting model. Results show that FSD determines the distribution and intensity of convection within the ABL through its influence on the atmospheric circulation. Substantial differences between various FSDs are found in the analysis of spatial arrangement and strength of ABL convection. To incorporate those sub-grid effects in the NWP models, a correction factor for the calculation of surface moisture heat flux is developed. It is expressed as a function of floe size, sea ice concentration and wind speed, and enables a correction of the flux computed from area-averaged quantities, as is typically done in NWP models. In general, the presented study sheds some more light on the sea ice–atmosphere interactions and provides the first attempt to parametrize the influence of FSD on the ABL.


Sign in / Sign up

Export Citation Format

Share Document