Calcium-dependent mitochondrial oxidative damage promoted by 5-aminolevulinic acid

Author(s):  
Marcelo Hermes-Lima ◽  
Roger F. Castilho ◽  
Valderez G.R. Valle ◽  
Etelvino J.H. Bechara ◽  
Anibal E. Vercesi
2003 ◽  
Vol 409 (2) ◽  
pp. 349-356 ◽  
Author(s):  
Maria E.M Rocha ◽  
Fernando Dutra ◽  
Brian Bandy ◽  
Regina L Baldini ◽  
Suely L Gomes ◽  
...  

2007 ◽  
Vol 44 (4) ◽  
pp. 439-445 ◽  
Author(s):  
Ahmad Mujahid ◽  
Neil R. Pumford ◽  
Walter Bottje ◽  
Kiyotaka Nakagawa ◽  
Teruo Miyazawa ◽  
...  

PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0238754
Author(s):  
Melissa Martinez ◽  
Gregory A. Fendley ◽  
Alexandra D. Saxberg ◽  
Maria E. Zoghbi

Heme biosynthesis occurs through a series of reactions that take place within the cytoplasm and mitochondria, so intermediates need to move across these cellular compartments. However, the specific membrane transport mechanisms involved in the process are not yet identified. The ATP-binding cassette protein ABCB10 is essential for normal heme production, as knocking down this transporter in mice is embryonically lethal and accompanied by severe anemia plus oxidative damage. The role of ABCB10 is unknown, but given its location in the inner mitochondrial membrane, it has been proposed as a candidate to export either an early heme precursor or heme. Alternatively, ABCB10 might transport a molecule important for protection against oxidative damage. To help discern between these possibilities, we decided to study the effect of heme analogs, precursors, and antioxidant peptides on purified human ABCB10. Since substrate binding increases the ATP hydrolysis rate of ABC transporters, we have determined the ability of these molecules to activate purified ABCB10 reconstituted in lipid nanodiscs using ATPase measurements. Under our experimental conditions, we found that the only heme analog increasing ABCB10 ATPase activity was Zinc-mesoporphyrin. This activation of almost seventy percent was specific for ABCB10, as the ATPase activity of a negative control bacterial ABC transporter was not affected. The activation was also observed in cysteine-less ABCB10, suggesting that Zinc-mesoporphyrin’s effect did not require binding to typical heme regulatory motifs. Furthermore, our data indicate that ABCB10 was not directly activated by neither the early heme precursor delta-aminolevulinic acid nor glutathione, downsizing their relevance as putative substrates for this transporter. Although additional studies are needed to determine the physiological substrate of ABCB10, our findings reveal Zinc-mesoporphyrin as the first tool compound to directly modulate ABCB10 activity and raise the possibility that some actions of Zinc-mesoporphyrin in cellular and animal studies could be mediated by ABCB10.


2020 ◽  
Vol 36 (10) ◽  
pp. 1158-1170
Author(s):  
Xun Wu ◽  
Wenxing Cui ◽  
Wei Guo ◽  
Haixiao Liu ◽  
Jianing Luo ◽  
...  

Abstract Clinical advances in the treatment of intracranial hemorrhage (ICH) are restricted by the incomplete understanding of the molecular mechanisms contributing to secondary brain injury. Acrolein is a highly active unsaturated aldehyde which has been implicated in many nervous system diseases. Our results indicated a significant increase in the level of acrolein after ICH in mouse brain. In primary neurons, acrolein induced an increase in mitochondrial fragmentation, loss of mitochondrial membrane potential, generation of reactive oxidative species, and release of mitochondrial cytochrome c. Mechanistically, acrolein facilitated the translocation of dynamin-related protein1 (Drp1) from the cytoplasm onto the mitochondrial membrane and led to excessive mitochondrial fission. Further studies found that treatment with hydralazine (an acrolein scavenger) significantly reversed Drp1 translocation and the morphological damage of mitochondria after ICH. In parallel, the neural apoptosis, brain edema, and neurological functional deficits induced by ICH were also remarkably alleviated. In conclusion, our results identify acrolein as an important contributor to the secondary brain injury following ICH. Meanwhile, we uncovered a novel mechanism by which Drp1-mediated mitochondrial oxidative damage is involved in acrolein-induced brain injury.


1997 ◽  
Vol 23 (1) ◽  
pp. 40-46 ◽  
Author(s):  
Fernando G. Princ ◽  
Adela Ana Juknat ◽  
Andrea Grisel Maxit ◽  
Carina Cardalda ◽  
Alcira Battle

2007 ◽  
Vol 194 (3) ◽  
pp. 637-643 ◽  
Author(s):  
M I Rodriguez ◽  
G Escames ◽  
L C López ◽  
J A García ◽  
F Ortiz ◽  
...  

Cardiac and diaphragmatic mitochondria from male SAMP8 (senescent) and SAMR1 (resistant) mice of 5 or 10 months of age were studied. Levels of lipid peroxidation (LPO), glutathione (GSH), GSH disulfide (GSSG), and GSH peroxidase and GSH reductase (GRd) activities were measured. In addition, the effect of chronic treatment with the antioxidant melatonin from 1 to 10 months of age was evaluated. Cardiac and diaphragmatic mitochondria show an age-dependent increase in LPO levels and a reduction in GSH:GSSG ratios. Chronic treatment with melatonin counteracted the age-dependent LPO increase and GSH:GSSG ratio reduction in these mitochondria. Melatonin also increased GRd activity, an effect that may account for the maintenance of the mitochondrial GSH pool. Total mitochondrial content of GSH increased after melatonin treatment. In general, the effects of age and melatonin treatment were similar in senescence-resistant mice (SAMR1) and SAMP8 cardiac and diaphragmatic mitochondria, suggesting that these mice strains display similar mitochondrial oxidative damage at the age of 10 months. The results also support the efficacy of long-term melatonin treatment in preventing the age-dependent mitochondrial oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document