Soil microflora associated with pot cultures of Glomus intraradix-infected Citrus reticulata

1994 ◽  
Vol 1 (4) ◽  
pp. 299-306 ◽  
Author(s):  
Stan Nemec
Author(s):  
Rubal C Das ◽  
Rajib Banik ◽  
Robiul Hasan Bhuiyan ◽  
Md Golam Kabir

Macrophomina phaseolina is one of the pathogenic organisms of gummosis disease of orange tree (Citrus reticulata). The pathogen was identified from the observation of their colony size, shape, colour, mycelium, conidiophore, conidia, hyaline, spore, and appressoria in the PDA culture. The crude chloroform extracts from the organism showed antibacterial activity against a number of Gram positive and Gram-negative bacteria. The crude chloroform extract also showed promising antifungal activity against three species of the genus Aspergillus. The minimum inhibitory concentration (MIC) of the crude chloroform extract from M. phaseolina against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Shigella sonnie were 128 ?gm, 256 ?gm, 128 ?gm and 64 ?gm/ml respectively. The LD50 (lethal dose) values of the cytotoxicity assay over brine shrimp of the crude chloroform extract from M. phaseolina was found to be 51.79 ?gm/ml. DOI: http://dx.doi.org/10.3329/cujbs.v5i1.13378 The Chittagong Univ. J. B. Sci.,Vol. 5(1 &2):125-133, 2010


2008 ◽  
Vol 23 (1) ◽  
pp. 164-177 ◽  
Author(s):  
Maria Swiontek Brzezinska ◽  
Elżbieta Lalke-Porczyk ◽  
Wojciech Donderski
Keyword(s):  

2018 ◽  
Vol 44 (2) ◽  
pp. 145-158 ◽  
Author(s):  
H.J. Liu ◽  
X.Y. Yang ◽  
Z.Q. Miao ◽  
S.D. Li ◽  
Y.H. Chen ◽  
...  

Author(s):  
Lyubov K. Altunina ◽  
◽  
Vladimir P. Burkov ◽  
Petr V. Burkov ◽  
Vitaly Y. Dudnikov ◽  
...  

In the Russian Arctic, a soil cryostructuring technique (i.e. strengthening of soil horizons with cryogel-based composite materials with no excavation of unstable soils required) seems to be showing promise. Experiments have proven that mechanical and thermal insulation properties attributed to cryogels make them appropriate for use in strengthening and thermally insulating the soil, while their structure makes it possible to form a stable vegetation cover. Field experiments have confirmed that cryostructuring efficiently strengthens the soil layer with cryogels stimulating soil microflora. An experience of using cryotropic compositions in the oil and gas sector was described. Notably, cryogels can be used to strengthen unstable soil foundations of trunk pipelines, as well as to bind soil (e.g. on slopes). In addition, cryogels are advised for use in engineering protection to prevent the uneven settlement of a trench base and its creep: thus, cryogels are pumped into the soil of the trench bottom base to create a support system representing a spatial lattice. After the first freeze and thaw cycle, cryotropic material is formed and then increases its strength and elasticity with each new cycle. More broadly, opportunities have been considered regarding cryogels used in various engineering and geological conditions, while taking into account the outcomes of landscape and territorial analysis. It was concluded that cryogel-based composite materials are a promising innovative scientific field expanding technological capabilities for developing and using spaces and resources in the Russian Arctic.


2019 ◽  
Vol 2 (1) ◽  
pp. 1-6
Author(s):  
dwi rizki febrianti ◽  
◽  
novia ariani ◽  
Rakhmadhan Niah ◽  
Rahmatul Jannah ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document