High temperature tensile creep of CMSX-2 Nickel base superalloy single crystals

1994 ◽  
Vol 42 (9) ◽  
pp. 3137-3148 ◽  
Author(s):  
H. Rouault-Rogez ◽  
M. Dupeux ◽  
M. Ignat
1986 ◽  
Vol 81 ◽  
Author(s):  
D. M. Shah ◽  
D. N. Duhl

AbstractMulticomponent nickel base intermetallics with the L12 structure were evaluated as high temperature structural materials. The compounds were based on the γ' composition of PWA 1480, a high strength single crystal nickel base superalloy. The best balance of properties in the compound was achieved with <111> oriented single crystals but no significant advantage could be demonstrated over the precipitation hardened superalloys. Insufficient impact resistance was a major deficiency of the L12 compounds. Other nickel base intermetallics were also evaluated but showed little advantage over superalloys.


1970 ◽  
Vol 37 (3) ◽  
pp. 759-764 ◽  
Author(s):  
P. R. Paslay ◽  
C. H. Wells ◽  
G. R. Leverant

The orientation and stress dependence of the primary creep rate in single crystals of a nickel-base superalloy is predicted from crystallographic deformation mechanisms. An experimentally determined relationship between the deformation rate and applied stress is employed to calculate the independent contributions of each of the possible slip systems to the strain rate. Calculations were made for single crystals of a nickel-base superalloy tested in tensile creep at 1400 deg F, at which temperature the active slip planes are known to be {111}, and the slip directions either 〈110〉 or 〈112〉 at high or low strain rates, respectively. Comparison with measured primary creep rates showed the 〈110〉 contribution to be negligible and that while semi-quantitative agreement with the 〈112〉 analysis was obtained, an accurate prediction of creep rates may require inclusion of strain hardening in the analysis.


1985 ◽  
Vol 16 (8) ◽  
pp. 1457-1466 ◽  
Author(s):  
K. Sugimoto ◽  
T. Sakaki ◽  
T. Horie ◽  
K. Kuramoto ◽  
O. Miyagawa

2015 ◽  
Vol 658 ◽  
pp. 14-18
Author(s):  
Tanaporn Rojhirunsakool ◽  
Duangkwan Thongpian ◽  
Nutthita Chuankrerkkul ◽  
Panyawat Wangyao

Nickel-base superalloys have been used as high temperature materials in land-base gas turbine application. When subjected to long term, high temperature service, large crack propagation was observed. Typical refurbishment method of these turbines is carried out by using TIG welding followed by post-weld standard heat treatment. However, new crack initiation is found in the heat-affected zone after TIG welding. Pre-weld heat treatment has been discovered to improves final γ + γ’ microstructure. This study focuses on the effect of pre-weld heat treatment temperature on final γ + γ’ microstructure. Seven different conditions of pre-weld heat treatment temperature were investigated. Scanning electron microscopy studies were carried out after pre-weld and post-weld heat treatments to compare the γ + γ’ microstructure and capture microcracks. The best pre-weld heat treatment temperature produces uniform distribution of finely dispersed γ’ precipitates in the γ matrix without post-weld crack.


Sign in / Sign up

Export Citation Format

Share Document