Effects of repeated austenitizing treatments on the strength and impact toughness of a low-carbon, copper-containing martensitic steel

1992 ◽  
Vol 26 (10) ◽  
pp. 1553-1558 ◽  
Author(s):  
M.A. Cooke ◽  
B.H. Chapman ◽  
S.W. Thompson
Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 939 ◽  
Author(s):  
Yun Zong ◽  
Chun-Ming Liu

In order to provide important guidance for controlling and obtaining the optimal microstructures and mechanical properties of a welded joint, the continuous cooling transformation diagram of a new low-carbon Nb-microalloyed bainite E550 steel in a simulated coarse-grain heat-affected zone (CGHAZ) has been constructed by thermal dilatation method in this paper. The welding thermal simulation experiments were conducted on a Gleeble-3800 thermo-mechanical simulator. The corresponding microstructure was observed by a LEICA DM2700M. The Vickers hardness (HV) and the impact toughness at −40 °C were measured according to the ASTM E384 standard and the ASTM E2298 standard, respectively. The experimental results may indicate that the intermediate temperature phase transformation of the whole bainite can occur in a wide range of cooling rates of 2–20 °C/s. In the scope of cooling rates 2–20 °C/s, the microstructure of the heat-affected zone (HAZ) mainly consists of lath bainite and granular bainite. Moreover, the proportion of lath bainite increased and granular bainite decreased as the cooling rate increasing. There is a spot of lath martensite in the microstructure of HAZ when the cooling rate is above 20 °C/s. The Vickers hardness increases gradually with the increasing of the cooling rate, and the maximum hardness is 323 HV10. When the cooling time from 800 °C to 500 °C (t8/5) is 5–15 s, it presents excellent −40 °C impact toughness (273–286 J) of the CGHAZ beyond the base material (163 J).


2021 ◽  
pp. 116828
Author(s):  
Akinobu Shibata ◽  
Takashi Yonemura ◽  
Yuji Momotani ◽  
Myeong-heom Park ◽  
Shusaku Takagi ◽  
...  

2016 ◽  
Vol 2016 (3) ◽  
pp. 174-180
Author(s):  
I. D. Romanov ◽  
A. A. Shatsov ◽  
M. G. Zakirova ◽  
S. K. Berezin

2018 ◽  
Vol 60 (3-4) ◽  
pp. 142-149 ◽  
Author(s):  
A. A. Zisman ◽  
N. Y. Zolotorevsky ◽  
S. N. Petrov ◽  
E. I. Khlusova ◽  
E. A. Yashina

2021 ◽  
Vol 1016 ◽  
pp. 42-49
Author(s):  
Kook Soo Bang ◽  
Joo Hyeon Cha ◽  
Kyu Tae Han ◽  
Hong Chul Jeong

The present work investigated the effects of Al, Si, and N content on the impact toughness of the coarse-grained heat-affected zone (CGHAZ) of Ti-containing low-carbon steel. Simulated CGHAZ of differing Al, Si, and N contents were prepared, and Charpy impact toughness was determined. The results were interpreted in terms of microstructure, especially martensite-austenite (M-A) constituent. All elements accelerated ferrite transformation in CGHAZ but at the same time increased the amount of M-A constituent, thereby deteriorating CGHAZ toughness. It is believed that Al, Si, and free N that is uncombined with Ti retard the decomposition of austenite into pearlite and increase the carbon content in the last transforming austenite, thus increasing the amount of M-A constituent. Regardless of the amount of ferrite in CGHAZ, its toughness decreased linearly with an increase of M-A constituent in this experiment, indicating that HAZ toughness is predominantly affected by the presence of M-A constituent. When a comparison of the effectiveness is made between Al and Si, it showed that a decrease in Si content is more effective in reducing M-A constituents.


2009 ◽  
Vol 79-82 ◽  
pp. 143-146
Author(s):  
Jiang Hua Ma ◽  
Dong Ping Zhan ◽  
Zhou Hua Jiang ◽  
Ji Cheng He

In order to understand the effects of deoxidizer such as aluminium, titanium and magnesium on the impact toughness of heat affected zone (HAZ), three low carbon steels deoxidized by Ti-Al, Mg and Ti-Mg were obtained. After smelting, forging, rolling and welding simulation, the effects of Al, Ti and Mg addition on the impact toughness of HAZ in low carbon steel were studied. The inclusion characteristics (size, morphology and chemistry) of samples before welding and the fracture pattern of the specimens after the Charpy-type test were respectively analyzed using optical microscope and scanning electron microscopy (SEM). The following results were found. The density of inclusion in Ti-Mg deoxidized steel is bigger than Ti-Al deoxidized steel. The average diameter is decreased for the former than the latter. The addition of Ti-Mg can enhance the impact toughness of the HAZ after welding simulation. The maximal value of the impact toughness is 66.5J/cm2. The complex particles of MgO-TiOx-SiO2-MnS are most benefit to enhance impact toughness. The improvement of HAZ is attributable to the role of particle pinning and the formation of intergranular ferrite.


Sign in / Sign up

Export Citation Format

Share Document