Type II antagonists impair the DNA binding of steroid hormone receptors without affecting dimerization

1993 ◽  
Vol 45 (4) ◽  
pp. 205-215 ◽  
Author(s):  
Marie-Thérèse Bocquel ◽  
Jingwei Ji ◽  
Timo Ylikomi ◽  
Brigitte Benhamou ◽  
Agnès Vergezac ◽  
...  
2001 ◽  
Vol 361 (1) ◽  
pp. 97-103 ◽  
Author(s):  
Guy VERRIJDT ◽  
Annemie HAELENS ◽  
Erik SCHOENMAKERS ◽  
Wilfried ROMBAUTS ◽  
Frank CLAESSENS

We performed a comparative analysis of the effect of high-mobility group box protein 1 (HMGB1) on DNA binding by the DNA-binding domains (DBDs) of the androgen, glucocorticoid, progesterone and mineralocorticoid receptors. The affinity of the DBDs of the different receptors for the tyrosine aminotransferase glucocorticoid response element, a classical high-affinity binding element, was augmented up to 7-fold by HMGB1. We found no major differences in the effects of HMGB1 on DNA binding between the different steroid hormone receptors. In transient transfection assays, however, HMGB1 significantly enhances the activity of the glucocorticoid and progesterone receptors but not the androgen or mineralocorticoid receptor. We also investigated the effect of HMGB1 on the binding of the androgen receptor DBD to a subclass of directly repeated response elements that is recognized exclusively by the androgen receptor and not by the glucocorticoid, progesterone or mineralocorticoid receptor. Surprisingly, a deletion of 26 amino acid residues from the C-terminal extension of the androgen receptor DBD does not influence DNA binding but destroys its sensitivity to HMGB1. Deletion of the corresponding fragment in the DBDs of the glucocorticoid, progesterone and mineralocorticoid receptor destroyed their DNA binding. This 26-residue fragment is therefore essential for the influence of HMGB1 on DNA recognition by all steroid hormone receptors that were tested. However, it is dispensable for DNA binding by the androgen receptor.


Chemosphere ◽  
1987 ◽  
Vol 16 (8-9) ◽  
pp. 1681-1686
Author(s):  
Lorenz Poellinger ◽  
Anna Wilhelmsson ◽  
Scott Cuthill ◽  
Johan Lund ◽  
Peter Söderkvist ◽  
...  

2006 ◽  
Vol 34 (6) ◽  
pp. 1089-1094 ◽  
Author(s):  
G. Verrijdt ◽  
T. Tanner ◽  
U. Moehren ◽  
L. Callewaert ◽  
A. Haelens ◽  
...  

The AR (androgen receptor) is a hormone-dependent transcription factor that translates circulating androgen hormone levels into a physiological cellular response by directly regulating the expression of its target genes. It is the key molecule in e.g. the development and maintenance of the male sexual characteristics, spermatocyte production and prostate gland development and growth. It is also a major factor in the onset and maintenance of prostate cancer and a first target for pharmaceutical action against the further proliferation of prostate cancer cells. The AR is a member of the steroid hormone receptors, a group of steroid-inducible transcription factors sharing an identical consensus DNA-binding motif. The problem of how specificity in gene activation is achieved among the different members of this nuclear receptor subfamily is still unclear. In this report, we describe our investigations on how the AR can specifically activate its target genes, while the other steroid hormone receptors do not, despite having the same consensus monomeric DNA-binding motif. In this respect, we describe how the AR interacts with a newly identified class of steroid-response elements to which only the AR and not, for example, the glucocorticoid receptor can bind.


Sign in / Sign up

Export Citation Format

Share Document