Acoustic emission and vibration in the process of rolling contact fatigue (4th report) (In Japanese)

1994 ◽  
Vol 27 (4) ◽  
pp. 212
Author(s):  
Yoshioka T.
Author(s):  
A. W. Warren ◽  
Y. B. Guo

The fundamental knowledge of fatigue damage mechanism is necessary for understanding manufacturing process effects. However, the artificial defects on the test samples in traditional fatigue tests will change the surface integrity and therefore may not reflect the nature of fatigue damage. This paper studies the fatigue damage resulting from real-life rolling contact tests and finite element analysis of AISI 52100 steel and identifies the possible mechanisms for fatigue failure in the presence of process induced surface integrity. Rolling contact fatigue damage was real-time monitored using an acoustic emission (AE) sensor. Surface and subsurface fatigue damage of the samples was then characterized using optical and scanning electron microscopy (SEM) and surface profiling. The results suggest that shear stress induced Mode II crack is the dominant fatigue mechanism. Two types of subsurface cracks were observed: main cracks that propagate parallel to the surface due to subsurface shear stress induced fracture/debonding of inclusions or second phase particles. Shear stress induced surface cracks propagate at shallow angles (∼35°) from the surface. Branching cracks eventually form and connect the main crack to surface. The formation of main cracks and surface cracks may be parallel processes, and spalling occurs as a combined effect of the main, surface, and branching cracks. The relationship between AE signals and fatigue damage was been established.


2009 ◽  
Vol 42 (6) ◽  
pp. 807-815 ◽  
Author(s):  
Ziaur Rahman ◽  
Hiroaki Ohba ◽  
Takeo Yoshioka ◽  
Takashi Yamamoto

Author(s):  
D Nélias ◽  
T Yoshioka

This paper describes a deep groove ball-bearing analysis which has been developed to simulate acoustic emission occurring during ball-bearing operation. The computer simulation is useful to clarify experimental research on rolling contact fatigue initiation using the acoustic emission technique. Results show the ability of the method to detect and to locate a subsurface defect, due to rolling contact fatigue, before the rolling bearing failure occurs. The subsurface defect can be accurately located within the inner ring of a deep groove ball-bearing operating under radial load.


Author(s):  
A. W. Warren ◽  
Y. B. Guo

Hard turning and grinding are finishing processes for the manufacture of precision components such as bearings, gears, and cams. However, the effects of distinct surface integrity by hard turning vs. grinding on rolling contact life are poorly understood. Four representative surface types were prepared: as-turned, as-ground, turned and polished, and ground and polished. Surface integrity was characterized by surface topography, microstructure, and micro/nanohardness. Fatigue tests were performed with an acoustic emission sensor and the signal processing software. The amplitude of acoustic emission signal is the most stable and sensitive signal to fatigue failure. The turned surface may have a longer life (>84%) than the ground one with equivalent surface finish.


Author(s):  
Shengrun Shi ◽  
Zhiyuan Han ◽  
Zipeng Liu ◽  
Patrick Vallely ◽  
Slim Soua ◽  
...  

Structural degradation of rails will unavoidably take place with time due to cyclic bending stresses, rolling contact fatigue, impact and environmental degradation. Rail infrastructure managers employ a variety of techniques and equipment to inspect rails. Still tens of rail failures are detected every year on all major rail networks. Inspection of the rail network is normally carried out at night time, when normal traffic has ceased. As the implementation of the 24-h railway moves forward to address the increasing demand for rail transport, conventional inspection processes will become more difficult to implement. Therefore, there is an obvious need to gradually replace outdated inspection methodologies with more efficient remote condition monitoring technology. The remote condition monitoring techniques employed should be able to detect and evaluate defects without causing any reduction in the optimum rail infrastructure availability. Acoustic emission is a passive remote condition monitoring technique which can be employed for the quantitative evaluation of the structural integrity of rails. Acoustic emission sensors can be easily installed on rails in order to monitor the structural degradation rate in real time. Therefore, apart from detecting defects, acoustic emission can be realistically applied to quantify damage. In this study, the authors investigated the performance of acoustic emission in detecting and quantifying damage in rail steel samples subjected to cyclic fatigue loads during experiments carried out under laboratory conditions. Herewith, the key results obtained are presented together with a detailed discussion of the approach employed in filtering noise sources during data acquisition and subsequent signal processing.


Sign in / Sign up

Export Citation Format

Share Document