Thermal and metalloogenetic History of the maritimes basin of atlantic Canada: integration of fission track data

1993 ◽  
Vol 21 (4) ◽  
pp. 615
Author(s):  
Marcos Zentilli ◽  
E. Ravenhurst Casey
Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 604
Author(s):  
Evgeny V. Vetrov ◽  
Johan De Grave ◽  
Natalia I. Vetrova ◽  
Fedor I. Zhimulev ◽  
Simon Nachtergaele ◽  
...  

The West Siberian Basin (WSB) is one of the largest intracratonic Meso-Cenozoic basins in the world. Its evolution has been studied over the recent decades; however, some fundamental questions regarding the tectonic evolution of the WSB remain unresolved or unconfirmed by analytical data. A complete understanding of the evolution of the WSB during the Mesozoic and Cenozoic eras requires insights into the cooling history of the basement rocks as determined by low-temperature thermochronometry. We presented an apatite fission track (AFT) thermochronology study on the exposed parts of the WSB basement in order to distinguish tectonic activation episodes in an absolute timeframe. AFT dating of thirteen basement samples mainly yielded Cretaceous cooling ages and mean track lengths varied between 12.8 and 14.5 μm. Thermal history modeling based on the AFT data demonstrates several Mesozoic and Cenozoic intracontinental tectonic reactivation episodes affected the WSB basement. We interpreted the episodes of tectonic activity accompanied by the WSB basement exhumation as a far-field effect from tectonic processes acting on the southern and eastern boundaries of Eurasia during the Mesozoic–Cenozoic eras.


1998 ◽  
Vol 43 (S1) ◽  
pp. 137-137
Author(s):  
J. L. Wan ◽  
Q. L. Wang ◽  
D. M. Li

1993 ◽  
Vol 30 (4) ◽  
pp. 764-768 ◽  
Author(s):  
John M. Murphy ◽  
Arne Bakke

Eight apatite and two zircon fission-track ages provide evidence of complex Tertiary thermal overprinting by hydrothermal fluids in the Gilmore Dome area. Five ages on apatite from the Fort Knox gold deposit average 41 Ma, one from the Stepovich prospect is 80 Ma, and two from Pedro Dome average 67 Ma. Elevations of these samples overlap but their ages do not, indicating that each area experienced a different thermal history.Ages of apatite from the Fort Knox gold deposit decrease with elevation from 42 to 36 Ma but have data trends indicative of complex cooling. Two ~51 Ma ages on zircon indicate that maximum temperatures approached or exceeded ~180 °C. An alteration assemblage of chalcedony + zeolite + calcite + clay in the deposit resulted from deposition by a paleo-hydrothermal system. The data suggest that the system followed a complex cooling path from > 180 to < 110 °C between 51 and 36 Ma, and that final cooling to below 60 °C occurred after ~25 Ma.The 80 Ma age from Stepovich prospect either resulted from cooling after intrusion of the underlying pluton (~90 Ma) or records postintrusion thermal overprinting sometime after ~50 Ma. The 67 Ma samples from Pedro Dome may also have experienced partial age reduction during later heating. The differences in the data from the different areas and the presence of a late alteration assemblage at Fort Knox suggest that the fluids responsible for heating were largely confined to the highly fractured and porous Fort Knox pluton.


1997 ◽  
Vol 34 (10) ◽  
pp. 1366-1378 ◽  
Author(s):  
Paul B. O'Sullivan ◽  
Larry S. Lane

Apatite fission-track data from 16 sedimentary and crystalline rock samples indicate rapid regional Early Eocene denudation within the onshore Beaufort–Mackenzie region of northwestern Canada. Rocks exposed in the area of the Big Fish River, Northwest Territories, cooled rapidly from paleotemperatures of >80–110 °C to <6 0°C at ca. 56 ± 2 Ma, probably in response to kilometre-scale denudation associated with regional structuring. The data suggest the region experienced a geothermal gradient of ~28 °C/km prior to rapid cooling, with ~2.7 km of section having been removed from the top of the exposed section in the Moose Channel Formation and ~3.8 km from the top of the exposed Cuesta Creek Member. Farther to the west, rocks exposed in the headwaters of the Blow River in the Barn Mountains, Yukon Territories, were exposed to paleotemperatures above 110 °C in the Late Paleocene prior to rapid cooling from these elevated paleotemperatures due to kilometre-scale denudation at ca. 56 ± 2 Ma. Exposure of these samples at the surface today requires that a minimum of ~3.8 km of denudation occurred since they began cooling below ~110 °C. The apatite analyses indicate that rocks exposed in the northern Yukon and Northwest Territories experienced rapid cooling during the Early Eocene in response to kilometre-scale denudation, associated with early Tertiary folding and thrusting in the northern Cordillera. Early Eocene cooling–uplift ages for onshore sections are slightly older than the Middle Eocene ages previously documented for the adjacent offshore foldbelt and suggest that the deformation progressed toward the foreland of the foldbelt through time.


Author(s):  
John Reid

This article traces the author’s path from early life in the United Kingdom to graduate school in Newfoundland and New Brunswick and then to a series of faculty positions – ultimately, at Saint Mary’s University. Early work in the seventeenth-century history of northern New England gave way to a more broadly comparative approach to this era and, eventually, to an effort to coordinate imperial, colonial, and Indigenous history in northeastern North America. A variety of career uncertainties and evolutions also led to involvement in the history of higher education, the history of Atlantic Canada, and the history of sport. Through it all, collaborative work developed as a recurrent approach, with Atlantic Canada themes frequently underpinning responses to a variety of historiographies.


2021 ◽  
Author(s):  
Jennifer Spalding ◽  
Jeremy Powell ◽  
David Schneider ◽  
Karen Fallas

&lt;p&gt;Resolving the thermal history of sedimentary basins through geological time is essential when evaluating the maturity of source rocks within petroleum systems. Traditional methods used to estimate maximum burial temperatures in prospective sedimentary basin such as and vitrinite reflectance (%Ro) are unable to constrain the timing and duration of thermal events. In comparison, low-temperature thermochronology methods, such as apatite fission track thermochronology (AFT), can resolve detailed thermal histories within a temperature range corresponding to oil and gas generation. In the Peel Plateau of the Northwest Territories, Canada, Phanerozoic sedimentary strata exhibit oil-stained outcrops, gas seeps, and bitumen occurrences. Presently, the timing of hydrocarbon maturation events are poorly constrained, as a regional unconformity at the base of Cretaceous foreland basin strata indicates that underlying Devonian source rocks may have undergone a burial and unroofing event prior to the Cretaceous. Published organic thermal maturity values from wells within the study area range from 1.59 and 2.46 %Ro for Devonian strata and 0.54 and 1.83 %Ro within Lower Cretaceous strata. Herein, we have resolved the thermal history of the Peel Plateau through multi-kinetic AFT thermochronology. Three samples from Upper Devonian, Lower Cretaceous and Upper Cretaceous strata have pooled AFT ages of 61.0 &amp;#177; 5.1 Ma, 59.5 &amp;#177; 5.2 and 101.6 &amp;#177; 6.7 Ma, respectively, and corresponding U-Pb ages of 497.4 &amp;#177; 17.5 Ma (MSWD: 7.4), 353.5 &amp;#177; 13.5 Ma (MSWD: 3.1) and 261.2 &amp;#177; 8.5 Ma (MSWD: 5.9). All AFT data fail the &amp;#967;&lt;sup&gt;2&lt;/sup&gt; test, suggesting AFT ages do not comprise a single statistically significant population, whereas U-Pb ages reflect the pre-depositional history of the samples and are likely from various provenances. Apatite chemistry is known to control the temperature and rates at which fission tracks undergo thermal annealing. The r&lt;sub&gt;mro&lt;/sub&gt; parameter uses grain specific chemistry to predict apatite&amp;#8217;s kinetic behaviour and is used to identify kinetic populations within samples. Grain chemistry was measured via electron microprobe analysis to derive r&lt;sub&gt;mro&lt;/sub&gt; values and each sample was separated into two kinetic populations that pass the &amp;#967;&lt;sup&gt;2&lt;/sup&gt; test: a less retentive population with ages ranging from 49.3 &amp;#177; 9.3 Ma to 36.4 &amp;#177; 4.7 Ma, and a more retentive population with ages ranging from 157.7 &amp;#177; 19 Ma to 103.3 &amp;#177; 11.8 Ma, with r&lt;sub&gt;mr0&lt;/sub&gt; benchmarks ranging from 0.79 and 0.82. Thermal history models reveal Devonian strata reached maximum burial temperatures (~165&amp;#176;C-185&amp;#176;C) prior to late Paleozoic to Mesozoic unroofing, and reheated to lower temperatures (~75&amp;#176;C-110&amp;#176;C) in the Late Cretaceous to Paleogene. Both Cretaceous samples record maximum burial temperatures (75&amp;#176;C-95&amp;#176;C) also during the Late Cretaceous to Paleogene. These new data indicate that Devonian source rocks matured prior to deposition of Cretaceous strata and that subsequent burial and heating during the Cretaceous to Paleogene was limited to the low-temperature threshold of the oil window. Integrating multi-kinetic AFT data with traditional methods in petroleum geosciences can help unravel complex thermal histories of sedimentary basins. Applying these methods elsewhere can improve the characterisation of petroleum systems.&lt;/p&gt;


2021 ◽  
Author(s):  
Tatyana Bagdasaryan ◽  
Roman Veselovskiy ◽  
Viktor Zaitsev ◽  
Anton Latyshev

&lt;p&gt;The largest continental igneous province, the Siberian Traps, was formed within the Siberian platform at the Paleozoic-Mesozoic boundary, ca. 252 million years ago. Despite the continuous and extensive investigation of the duration and rate of trap magmatism on the Siberian platform, these questions are still debated. Moreover, the post-Paleozoic thermal history of the Siberian platform is almost unknown. This study aims to reconstruct the thermal history of the Siberian platform during the last 250 Myr using the low-temperature thermochronometry. We have studied intrusive complexes from different parts of the Siberian platform, such as the Kotuy dike, the Odikhincha, Magan and Essey ultrabasic alkaline massifs, the Norilsk-1 and Kontayskaya intrusions, and the Padunsky sill. We use apatite fission-track (AFT) thermochronology to assess the time since the rocks were cooled below 110&amp;#8451;. Obtained AFT ages (207-173 Ma) are much younger than available U-Pb and Ar/Ar ages of the traps. This pattern might be interpreted as a long cooling of the studied rocks after their emplacement ca. 250 Ma, but this looks quite unlikely because contradicts to the geological observations. Most likely, the rocks were buried under a thick volcanic-sedimentary cover and then exhumed and cooled below 110&amp;#8451; ca. 207-173 Ma. Considering the increased geothermal gradient up to 50&amp;#8451;/km at that times, we can estimate the thickness of the removed overlying volcanic-sedimentary cover up to 207-173 Ma as about 2-3 km.&lt;/p&gt;&lt;p&gt;The research was carried out with the support of RFBR (grants 20-35-90066, 18-35-20058, 18-05-00590 and 18-05-70094) and the Program of development of Lomonosov Moscow State University.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document