The role and mechanism of metal ions and their complexes in enhancing damage in biological systems or in protecting these systems from these systems from the toxicity of O2−

1986 ◽  
Vol 2 (1) ◽  
pp. 3-11 ◽  
Author(s):  
S GOLDSTEIN ◽  
G CZAPSKI
2020 ◽  
Vol 39 (1) ◽  
pp. 231-246 ◽  
Author(s):  
Xian Zheng ◽  
Wenyu Cheng ◽  
Chendong Ji ◽  
Jin Zhang ◽  
Meizhen Yin

Abstract Metal ions are widely present in biological systems and participate in many critical biochemical processes such as material transportation, energy conversion, information transmission and metabolic regulation, making them indispensable substance in our body. They can cause health problems when deficiency or excess occurs. To understand various metabolic processes and facilitate diseases diagnosis, it is very important to measure the content and monitor the distribution of metal ions in individual cells, tissues and whole organisms. Among the various methods for metal ion detection, fluorescent sensors with organic dyes have attracted tremendous attention due to many advantages such as high fluorescence quantum yield, facile modification approaches and biocompatibility in addition to operation ease, high sensitivity, fast detection speed, and real-time detection. This review summarizes the recent progress on the detection and imaging of the metal ions in biological systems including Na+, K+, Ca2+, Mg2+, Fe2+/Fe3+, Zn2+, and Cu2+ provides an opinion on remaining challenges to be addressed in this field.


2021 ◽  
Vol 19 (1) ◽  
pp. 974-986
Author(s):  
Tanzimjahan A. Saiyed ◽  
Jerry O. Adeyemi ◽  
Damian C. Onwudiwe

Abstract Dithiocarbamate complexes are of immense interest due to their diverse structural properties and extensive application in various areas. They possess two sulfur atoms that often act as the binding sites for metal coordination in a monodentate, bidentate, or anisodentate fashion. These different coordination modes enhance the possibility for complex formation and make them useful in different areas especially in biomedical fields. A synergy exists in the metal ions and dithiocarbamate moieties, which tends to exert better properties than the respective individual components of the complex. These improved properties have also been attributed to the presence of the C–S bonds. Zinc and nickel ions have been majorly found to bind to the dithiocarbamate in bidentate modes, and consequently different geometries have resulted from this interaction. The aim of this review is to present some studies on the synthesis, structural chemistry, and the relevance of zinc and nickel dithiocarbamates complexes especially in biological systems.


Sign in / Sign up

Export Citation Format

Share Document