EFFECTS OF HgCl2 ON THE APICAL MEMBRANE AND ION TRANSPORT PROCESSES IN TURTLE BLADDER

Author(s):  
Thaddeus Wilczewski ◽  
Wolfram Nagel ◽  
William A. Brodsky ◽  
John Durham
1989 ◽  
Vol 257 (5) ◽  
pp. R973-R981
Author(s):  
D. L. Stetson

Turtle urinary bladder possesses four ion transport processes: Na+ absorption, H+ secretion, and HCO3- secretion-Cl- absorption. Each transport process is performed by a specific epithelial cell type. Granular cells absorb Na+ but they are not sensitive to antidiuretic hormone (ADH), unlike toad bladder granular cells. alpha-Carbonic anhydrase-rich (CA) cells secrete H+ via an apical H+-adenosinetriphosphatase (ATPase). Under conditions of low CO2 tension, this active pump is contained in the limiting membranes of certain cytoplasmic vesicles. The vesicles fuse with the apical membrane, and H+ pumps are incorporated into that membrane, as physiological conditions demand increased H+ secretion. The stimulus for fusion of these vesicles with the apical membrane appears to be intracellular acidification. beta-CA cells secrete HCO3- and reabsorb Cl-, both processes driven by H+-ATPase in the basolateral membrane in series with an apical Cl- -HCO3- exchanger. Increased intracellular adenosine 3',5'-cyclic monophosphate concentration in beta-cells stimulates net HCO3- secretion and induces an electrogenic component of this flux by activating an apical Cl- channel. This activation accompanies the fusion of an intracellular tubulovesicular network with the apical membrane. The membrane of this network may contain Cl- channels.


2010 ◽  
Vol 299 (1) ◽  
pp. R92-R100 ◽  
Author(s):  
Jens Berger ◽  
Martin Hardt ◽  
Wolfgang G. Clauss ◽  
Martin Fronius

A thin liquid layer covers the lungs of air-breathing vertebrates. Active ion transport processes via the pulmonary epithelial cells regulate the maintenance of this layer. This study focuses on basolateral Cl− uptake mechanisms in native lungs of Xenopus laevis and the involvement of the Na+/K+/2 Cl− cotransporter (NKCC) and HCO3−/Cl− anion exchanger (AE), in particular. Western blot analysis and immunofluorescence staining revealed the expression of the NKCC protein in the Xenopus lung. Ussing chamber experiments demonstrated that the NKCC inhibitors (bumetanide and furosemide) were ineffective at blocking the cotransporter under basal conditions, as well as under pharmacologically stimulated Cl−-secreting conditions (forskolin and chlorzoxazone application). However, functional evidence for the NKCC was detected by generating a transepithelial Cl− gradient. Further, we were interested in the involvement of the HCO3−/Cl− anion exchanger to transepithelial ion transport processes. Basolateral application of DIDS, an inhibitor of the AE, resulted in a significantly decreased the short-circuit current (ISC). The effect of DIDS was diminished by acetazolamide and reduced by increased external HCO3− concentrations. Cl− secretion induced by forskolin was decreased by DIDS, but this effect was abolished in the presence of HCO3−. These experiments indicate that the AE at least partially contributes to Cl− secretion. Taken together, our data show that in Xenopus lung epithelia, the AE, rather than the NKCC, is involved in basolateral Cl− uptake, which contrasts with the common model for Cl− secretion in pulmonary epithelia.


Physiology ◽  
1988 ◽  
Vol 3 (3) ◽  
pp. 97-99
Author(s):  
M Wiederholt

The cornea and lens of the eye are avascular transparent tissues that allow almost unimpeded transmission of light to the retina. The transparency of the cornea is a function of hydration, which in turn is affected by electrolyte transport processes across the cellular barriers.


Physiology ◽  
2017 ◽  
Vol 32 (5) ◽  
pp. 367-379 ◽  
Author(s):  
Julian L. Seifter ◽  
Hsin-Yun Chang

Clinical assessment of acid-base disorders depends on measurements made in the blood, part of the extracellular compartment. Yet much of the metabolic importance of these disorders concerns intracellular events. Intracellular and interstitial compartment acid-base balance is complex and heterogeneous. This review considers the determinants of the extracellular fluid pH related to the ion transport processes at the interface of cells and the interstitial fluid, and between epithelial cells lining the transcellular contents of the gastrointestinal and urinary tracts that open to the external environment. The generation of acid-base disorders and the associated disruption of electrolyte balance are considered in the context of these membrane transporters. This review suggests a process of internal and external balance for pH regulation, similar to that of potassium. The role of secretory gastrointestinal epithelia and renal epithelia with respect to normal pH homeostasis and clinical disorders are considered. Electroneutrality of electrolytes in the ECF is discussed in the context of reciprocal changes in Cl−or non Cl−anions and [Formula: see text].


1986 ◽  
Vol 250 (4) ◽  
pp. C609-C616 ◽  
Author(s):  
J. H. Durham ◽  
W. Nagel

Transmembrane electrical parameters of the epithelial cells in short-circuited turtle bladders were measured to determine whether those cells participating in Na reabsorption also participate in electrogenic transepithelial acidification and alkalinization. Amiloride-induced increases in intracellular potential (Vsca), apical fractional resistance (FRa), and concomitant decreases in short-circuit current (Isc) denote the participation of the impaled cells in Na reabsorption. In bladders from postabsorptive turtles, amiloride increased Vsca by -45 mV, increased FRa by 37%, and decreased Isc from 36 to -10 microA/cm2. In bladders from NaHCO3-loaded turtles, amiloride increased Vsca by -21 mV, FRa by 21%, and decreased Isc from 22 to 0 microA/cm2. Neither the subsequent inhibition of the negative acidification current in postabsorptive bladders, nor stimulation of positive alkalinization current in bladders from NaHCO3-loaded turtles was associated with any transmembrane electrical change that could be attributed to changes in those transport processes. It is concluded that the electrogenic luminal acidification and alkalinization processes of the turtle bladder are not produced by, or electrically coupled to, those cells that are involved in Na reabsorption.


1994 ◽  
Vol 267 (1) ◽  
pp. G119-G128 ◽  
Author(s):  
G. G. King ◽  
W. E. Lohrmann ◽  
J. W. Ickes ◽  
G. M. Feldman

Colonocytes must regulate intracellular pH (pHi) while they transport H+ and HCO3-. To investigate the membrane transport processes involved in pHi regulation, colonocyte pHi was measured with 2,'7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) in intact segments of rat distal colon mounted on a holder that fits into a standard fluorometer cuvette and allows independent superfusion of mucosal and serosal surfaces. When NCECF-acetoxymethyl ester was in the mucosal solution only, BCECF loaded surface colonocytes with a high degree of selectivity. In HEPES-buffered solutions, basal pHi was 7.31 +/- 0.01 (n = 68), and pHi was dependent on extracellular Na+. Cells acidified in Na(+)-free solution, and pHi rapidly corrected when Na+ was returned. pHi recovered at 0.22 +/- 0.01 pH/min (n = 6) when Na+ was introduced into the mucosal solution and at 0.02 +/- 0.01 pH/min (n = 7) when Na+ was absent from the mucosal solution. The presence or absence of Na+ in the serosal solution did not affect pHi. This indicated that the Na(+)-dependent pHi recovery process is located in the apical cell membrane, but not in the basolateral membrane. Because amiloride (1 mM) inhibited Na(+)-dependent pHi recovery by 75%, Na+/H+ exchange appears to be present in the apical membrane. Because Na(+)-independent pHi recovery was not affected by K(+)-free media, 50 microM SCH-28080, 100 nM bafilomycin A1, or Cl(-)-free media, this transport mechanism does not involve a gastriclike H(+)-K(+)-ATPase, a vacuolar H(+)-ATPase, or a Cl-/base exchanger. In summary, pHi was selectively measured in surface colonocytes by this technique. In these cells, the Na+/H+ exchange activity involved in pHi regulation was detected in the apical membrane, but not in the basolateral membrane.


Sign in / Sign up

Export Citation Format

Share Document