scholarly journals Effect of Osmotic Stress on Ion Transport Processes and Phospholipid Composition of Wheat (Triticum aestivum L.) Mitochondria

1986 ◽  
Vol 82 (4) ◽  
pp. 936-941 ◽  
Author(s):  
Robert R. Klein ◽  
John J. Burke ◽  
Richard F. Wilson
2012 ◽  
Vol 58 (No. 12) ◽  
pp. 534-539 ◽  
Author(s):  
G.Q. Wu ◽  
L.N. Zhang ◽  
Y.Y. Wang

 To investigate the responses of growth and antioxidant enzymes to osmotic stress in two different wheat cultivars, one drought tolerant (Heshangtou, HST) and the other drought sensitive (Longchun 15, LC15), 15-day-old wheat seedlings were exposed to osmotic stress of –0.25, –0.50, and –0.75 MPa for 2 days. It is found that osmotic stress decreased shoot length in both wheat cultivars, whereas to a lesser degree in HST than in LC15. The contents of malondialdehyde (MDA) and the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) of shoot in both wheat cultivars were increased by osmotic stress. It is clear that MDA contents increased less in the more drought tolerant cultivar HST than in drought sensitive one LC15. On the contrary, POD and CAT activities increased more in HST than LC15 under osmotic stress. As the activity of SOD, however, no significant differences were found between HST and LC15. These results suggest that wheat cultivar HST has higher activities of antioxidant enzymes such as POD and CAT to cope with oxidative damage caused by osmotic stress compared to sensitive LC15.  


2014 ◽  
Vol 9 (1) ◽  
pp. 683-688 ◽  
Author(s):  
Seyed Mehdi Naser Alavi ◽  
Mohammad Javad Arvin ◽  
Khosrow Manoochehri Kalantari

2010 ◽  
Vol 90 (5) ◽  
pp. 691-698 ◽  
Author(s):  
Z. -B. Qiu ◽  
J. -T. Li ◽  
M. Yue

In order to determine the damage repair role of helium-neon (He-Ne) laser on wheat (Triticum aestivum L.) exposed to osmotic stress, 12-d-old seedlings (with two fully expanded leaves) were treated with osmotic stress using 5% (wt/vol), 10% (wt/vol) and 15% (wt/vol) polyethylene glycol (PEG 6000) treatment for 9 d. After 9 d of osmotic stress, a He-Ne laser was employed to irradiate seedlings of spring wheat for 0 min, 1 min and 3 min. Changes in the concentration of malondialdehyde (MDA), hydrogen peroxide (H2O2), glutathione (GSH), ascorbate (AsA), the production rate of superoxide radical (O2), the activities of ascorbate peroxidase (APX), peroxidase (POD), catalase (CAT), superoxide dismutase (SOD) and glutathione reductase (GR) were measured to test the effects of laser radiation. The results showed that laser radiation for 3 min conferred tolerance to osmotic stress in wheat seedlings by decreasing the concentration of MDA and the production rate of O2, and increasing the activities of SOD and APX and GSH concentration. It was suggested that those changes in MDA, O2, antioxidative enzymes and antioxidative compounds were responsible for the increase in osmotic stress tolerance observed in the experiments. Therefore, antioxidative enzymes and antioxidative compounds may participate in the repair effect of laser on seedlings under osmotic stress. This is the first investigation reporting the damage repair role of He-Ne laser on plants exposed to osmotic stress.Key words: Helium-neon laser, wheat (Triticum aestivum L.), osmotic stress, antioxidative system


2012 ◽  
Vol 62 (1) ◽  
pp. 78-86 ◽  
Author(s):  
Mohamed Elsadig Eltayeb Habora ◽  
Amin Elsadig Eltayeb ◽  
Hisashi Tsujimoto ◽  
Kiyoshi Tanaka

2019 ◽  
Vol 25 ◽  
pp. 247-252
Author(s):  
A. G. Komisarenko ◽  
S. I. Mykhalska ◽  
V. M. Kurchii

Aim. The evaluation of the productivity components of wheat biotech plants with the additional copy of the ornithine-δ-aminotransferase (oat) gene under water stress conditions. Methods. Field and laboratory approaches for studying the parameters of the crop structure. Results. A comparative analysis of productivity components of control plants and forms, obtained via Agrobacterium-mediated transformation were made. During plants cultivation under water deficit the genotype differences among variants were detected. Conclusions. It was showed that under osmotic stress pressure biotech plants (T2) of wheat winter genotypes Favoritka, Dostatok, Volodarka demonstrated better indices of crop structure compared with control plants. The differences between T2 Zolotocolosa and control plants were not essential. Biotechnological plants with the additional copy of the oat gene under poor water supply conditions were higher, had better developed root systems and formed the increased number of additional (lateral) shoots. Keywords: Triticum aestivum L., biotechnological plants, ornithine-δ-aminotransferase gene, productivity components.


Sign in / Sign up

Export Citation Format

Share Document