Turtle urinary bladder: regulation of ion transport by dynamic changes in plasma membrane area

1989 ◽  
Vol 257 (5) ◽  
pp. R973-R981
Author(s):  
D. L. Stetson

Turtle urinary bladder possesses four ion transport processes: Na+ absorption, H+ secretion, and HCO3- secretion-Cl- absorption. Each transport process is performed by a specific epithelial cell type. Granular cells absorb Na+ but they are not sensitive to antidiuretic hormone (ADH), unlike toad bladder granular cells. alpha-Carbonic anhydrase-rich (CA) cells secrete H+ via an apical H+-adenosinetriphosphatase (ATPase). Under conditions of low CO2 tension, this active pump is contained in the limiting membranes of certain cytoplasmic vesicles. The vesicles fuse with the apical membrane, and H+ pumps are incorporated into that membrane, as physiological conditions demand increased H+ secretion. The stimulus for fusion of these vesicles with the apical membrane appears to be intracellular acidification. beta-CA cells secrete HCO3- and reabsorb Cl-, both processes driven by H+-ATPase in the basolateral membrane in series with an apical Cl- -HCO3- exchanger. Increased intracellular adenosine 3',5'-cyclic monophosphate concentration in beta-cells stimulates net HCO3- secretion and induces an electrogenic component of this flux by activating an apical Cl- channel. This activation accompanies the fusion of an intracellular tubulovesicular network with the apical membrane. The membrane of this network may contain Cl- channels.

1992 ◽  
Vol 263 (1) ◽  
pp. L104-L112 ◽  
Author(s):  
L. S. Ostedgaard ◽  
D. M. Shasby ◽  
M. J. Welsh

Apical membrane ion channels control the rate of transepithelial electrolyte transport in many epithelia. One way to study such channels in their native location, the apical membrane, is to eliminate the resistance of the basolateral membrane to ion flow. Then the opening and closing of apical channels can be measured as a transepithelial current, free from the influence of basolateral membrane transport processes. To develop a method that would permeabilize an epithelial basolateral membrane to ions and nucleotides, we examined the effect of Staphylococcus aureus alpha-toxin on the Cl(-)-secreting T84 epithelial cell line. alpha-Toxin permeabilized the basolateral, but not the apical membrane to Cl-, adenosine 3',5'-cyclic monophosphate (cAMP), and GTP. However, the integrity of signal-transduction pathways, the regulation of apical membrane Cl- channels, and the transepithelial resistance remained intact. In the course of examining the effect of ATP, we found that the basolateral membrane contained purinergic receptors that both stimulated Cl- secretion on their own and, at high concentrations, inhibited cAMP-induced Cl- secretion. These effects of extracellular ATP were eliminated after prolonged exposure to ATP, suggesting receptor downregulation. In addition, depletion of intracellular ATP following permeabilization prevented cAMP-dependent regulation of apical Cl- channels. We conclude that alpha-toxin may prove to be a useful tool for studying the regulation and properties of apical membrane ion channels.


1985 ◽  
Vol 249 (4) ◽  
pp. F553-F565 ◽  
Author(s):  
D. L. Stetson ◽  
P. R. Steinmetz

The carbonic anhydrase-rich (CA) cell population of the turtle urinary bladder, which is responsible for the secretion of H+ and probably of HCO-3, was studied by freeze-fracture and thin-section electron microscopy. The apical membrane of the major CA cell type (alpha type) was characterized by microplicae and by a coat of studs on its cytoplasmic side; on freeze-fracture, it contained a dense population of rod-shaped intra-membrane particles. When fixed at low CO2 tension, the apical membrane area of the alpha cell was reduced; its surface displayed microplicae as well as microvilli, and the apical cytoplasm contained many vesicles with rod-shaped particles and studs. The apical membrane of the other (beta type) CA cell was characterized by numerous individual microvilli without microplicae and by a relative absence of rod-shaped particles and studs. Instead, the beta cell contained studs and rod-shaped particles in its basolateral membrane. The ultrastructure and frequency of the beta CA cell were not affected by changes in CO2 tension. We suggest that the alpha cell is responsible for H+ secretion. The reversal of the polarity of the membrane elements in the beta cell and failure to respond to CO2 with amplification of its apical membrane are consistent with a role in HCO-3 secretion.


1984 ◽  
Vol 246 (4) ◽  
pp. F517-F525 ◽  
Author(s):  
C. S. Park ◽  
I. S. Edelman

The effects of aldosterone on the functional characteristics of the Na+ entry step across the apical membrane and on the Na+ exit step across the basolateral membrane of the urinary bladder of toads were examined using amiloride and ouabain as probes of the respective surfaces of the cell. Aldosterone stimulated Na+ transport with a concurrent increase in the transepithelial electrical conductance as did two other agents, vasopressin (ADH) and p-chloromercuriphenylsulfonate (PCMPS), primarily active on the apical membrane. Unlike the effects of ADH and PCMPS, however, the effect of aldosterone on Na+ conductance was blocked by actinomycin D and was associated with a decreased sensitivity of the apical Na+ channel to amiloride. In addition, aldosterone increased the sensitivity of the Na+ pump on the basolateral side to ouabain, an effect that was dependent on the metabolic state of the urinary bladder. These results support the inference of coordinate effects on Na+ permeability of the apical membrane and the Na+ pump of the basolateral membrane. Both effects of aldosterone appear to be dependent on the metabolic state of the transporting epithelium.


1980 ◽  
Vol 76 (1) ◽  
pp. 69-81 ◽  
Author(s):  
J Narvarte ◽  
A L Finn

Membrane potentials and the electrical resistance of the cell membranes and the shunt pathway of toad urinary bladder epithelium were measured using microelectrode techniques. These measurements were used to compute the equivalent electromotive forces (EMF) at both cell borders before and after reductions in mucosal Cl- concentration ([Cl]m). The effects of reduction in [Cl]m depended on the anionic substitute. Gluconate or sulfate substitutions increased transepithelial resistance, depolarized membrane potentials and EMF at both cell borders, and decreased cell conductance. Iodide substitutions had opposite effects. Gluconate or sulfate substitutions decreased apical Na conductance, where iodide replacements increased it. When gluconate or sulfate substitutions were brought about the presence of amiloride in the mucosal solution, apical membrane potential and EMF hyperpolarized with no significant changes in basolateral membrane potential or EMF. It is concluded that: (a) apical Na conductance depends, in part, on the anionic composition of the mucosal solution, (b) there is a Cl- conductance in the apical membrane, and (c) the electrical communication between apical and basolateral membranes previously described is mediated by changes in the size of the cell Na pool, most likely by a change in sodium activity.


1984 ◽  
Vol 246 (4) ◽  
pp. F501-F508
Author(s):  
L. G. Palmer ◽  
N. Speez

To test the hypothesis that antidiuretic hormone- (ADH) dependent water permeability is associated with changes in apical membrane area, hormone-dependent water flow and capacitance changes were measured in the toad urinary bladder under a number of different conditions. Dose-response relationships for water flow (Jv) and capacitance increases (delta C) were similar from 1 to 20 mU/ml ADH. At higher concentrations, Jv reached a plateau, while delta C decreased. The decrease in delta C was prevented by elimination of the osmotic gradient across the tissue. Serosal hydrazine (10 mM) increased Jv sevenfold and delta C threefold in the presence of 1 mU/ml ADH. Mucosal NH4Cl, at constant mucosal pH, increased Jv by 50-100%, but did not significantly change delta C. In the absence of an osmotic gradient, mucosal NH+4 increased delta C by 50%. NH4Cl had no effect on hydroosmotic response to 8-bromo-adenosine 3',5'-cyclic monophosphate (cAMP). Mucosal CO2 (9%) decreased Jv by greater than 90%, and delta C by 60% with 20 mU/ml ADH. Mucosal CO2 also inhibited the hydroosmotic response to 8-bromo-cAMP. Removal of serosal Na diminished cAMP-dependent Jv and delta C. The results confirmed the close relationship between ADH-dependent water permeability and membrane capacitance. They indicate, however, that under some circumstances membrane may be retrieved from the apical surface without affecting water permeability.


1994 ◽  
Vol 267 (1) ◽  
pp. G119-G128 ◽  
Author(s):  
G. G. King ◽  
W. E. Lohrmann ◽  
J. W. Ickes ◽  
G. M. Feldman

Colonocytes must regulate intracellular pH (pHi) while they transport H+ and HCO3-. To investigate the membrane transport processes involved in pHi regulation, colonocyte pHi was measured with 2,'7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) in intact segments of rat distal colon mounted on a holder that fits into a standard fluorometer cuvette and allows independent superfusion of mucosal and serosal surfaces. When NCECF-acetoxymethyl ester was in the mucosal solution only, BCECF loaded surface colonocytes with a high degree of selectivity. In HEPES-buffered solutions, basal pHi was 7.31 +/- 0.01 (n = 68), and pHi was dependent on extracellular Na+. Cells acidified in Na(+)-free solution, and pHi rapidly corrected when Na+ was returned. pHi recovered at 0.22 +/- 0.01 pH/min (n = 6) when Na+ was introduced into the mucosal solution and at 0.02 +/- 0.01 pH/min (n = 7) when Na+ was absent from the mucosal solution. The presence or absence of Na+ in the serosal solution did not affect pHi. This indicated that the Na(+)-dependent pHi recovery process is located in the apical cell membrane, but not in the basolateral membrane. Because amiloride (1 mM) inhibited Na(+)-dependent pHi recovery by 75%, Na+/H+ exchange appears to be present in the apical membrane. Because Na(+)-independent pHi recovery was not affected by K(+)-free media, 50 microM SCH-28080, 100 nM bafilomycin A1, or Cl(-)-free media, this transport mechanism does not involve a gastriclike H(+)-K(+)-ATPase, a vacuolar H(+)-ATPase, or a Cl-/base exchanger. In summary, pHi was selectively measured in surface colonocytes by this technique. In these cells, the Na+/H+ exchange activity involved in pHi regulation was detected in the apical membrane, but not in the basolateral membrane.


2007 ◽  
Vol 292 (4) ◽  
pp. G1079-G1088 ◽  
Author(s):  
Janet E. Simpson ◽  
Clifford W. Schweinfest ◽  
Gary E. Shull ◽  
Lara R. Gawenis ◽  
Nancy M. Walker ◽  
...  

Basal HCO3− secretion across the duodenum has been shown in several species to principally involve the activity of apical membrane Cl−/HCO3− exchanger(s). To investigate the identity of relevant anion exchanger(s), experiments were performed using wild-type (WT) mice and mice with gene-targeted deletion of the following Cl−/HCO3− exchangers localized to the apical membrane of murine duodenal villi: Slc26a3 [down-regulated in adenoma (DRA)], Slc26a6 [putative anion transporter 1 (PAT-1)], and Slc4a9 [anion exchanger 4 (AE4)]. RT-PCR of the isolated villous epithelium demonstrated PAT-1, DRA, and AE4 mRNA expression. Using the pH-sensitive dye BCECF, anion exchange rates were measured across the apical membrane of epithelial cells in the upper villus of the intact duodenal mucosa. Under basal conditions, Cl−/HCO3− exchange activity was reduced by 65–80% in the PAT-1(−) duodenum, 30–40% in the DRA(−) duodenum, and <5% in the AE4(−) duodenum compared with the WT duodenum. SO42−/HCO3− exchange was eliminated in the PAT-1(−) duodenum but was not affected in the DRA(−) and AE4(−) duodenum relative to the WT duodenum. Intracellular pH (pHi) was reduced in the PAT-1(−) villous epithelium but increased to WT levels in the absence of CO2/HCO3− or during methazolamide treatment. Further experiments under physiological conditions indicated active pHi compensation in the PAT-1(−) villous epithelium by combined activities of Na+/H+ exchanger 1 and Cl−-dependent transport processes at the basolateral membrane. We conclude that 1) PAT-1 is the major contributor to basal Cl−/HCO3− and SO42−/HCO3− exchange across the apical membrane and 2) PAT-1 plays a role in pHi regulation in the upper villous epithelium of the murine duodenum.


2003 ◽  
Vol 121 (4) ◽  
pp. 287-300 ◽  
Author(s):  
Stéphane Lourdel ◽  
Marc Paulais ◽  
Pedro Marvao ◽  
Antoine Nissant ◽  
Jacques Teulon

The distal-convoluted tubule (DCT) of the kidney absorbs NaCl mainly via an Na+-Cl− cotransporter located at the apical membrane, and Na+, K+ ATPase at the basolateral side. Cl− transport across the basolateral membrane is thought to be conductive, but the corresponding channels have not yet been characterized. In the present study, we investigated Cl− channels on microdissected mouse DCTs using the patch-clamp technique. A channel of ∼9 pS was found in 50% of cell-attached patches showing anionic selectivity. The NPo in cell-attached patches was not modified when tubules were preincubated in the presence of 10−5 M forskolin, but the channel was inhibited by phorbol ester (10−6 M). In addition, NPo was significantly elevated when the calcium in the pipette was increased from 0 to 5 mM (NPo increased threefold), or pH increased from 6.4 to 8.0 (NPo increased 15-fold). Selectivity experiments conducted on inside-out patches showed that the Na+ to Cl− relative permeability was 0.09, and the anion selectivity sequence Cl− ∼ I−&gt; Br− ∼ NO3− &gt; F−. Intracellular NPPB (10−4 M) and DPC (10−3 M) blocked the channel by 65% and 80%, respectively. The channel was inhibited at acid intracellular pH, but intracellular ATP and PKA had no effect. ClC-K Cl− channels are characterized by their sensitivity to the external calcium and to pH. Since immunohistochemical data indicates that ClC-K2, and perhaps ClC-K1, are present on the DCT basolateral membrane, we suggest that the channel detected in this study may belong to this subfamily of the ClC channel family.


2009 ◽  
Vol 20 (1) ◽  
pp. 282-295 ◽  
Author(s):  
Weiqun Yu ◽  
Puneet Khandelwal ◽  
Gerard Apodaca

Epithelial cells respond to mechanical stimuli by increasing exocytosis, endocytosis, and ion transport, but how these processes are initiated and coordinated and the mechanotransduction pathways involved are not well understood. We observed that in response to a dynamic mechanical environment, increased apical membrane tension, but not pressure, stimulated apical membrane exocytosis and ion transport in bladder umbrella cells. The exocytic response was independent of temperature but required the cytoskeleton and the activity of a nonselective cation channel and the epithelial sodium channel. The subsequent increase in basolateral membrane tension had the opposite effect and triggered the compensatory endocytosis of added apical membrane, which was modulated by opening of basolateral K+ channels. Our results indicate that during the dynamic processes of bladder filling and voiding apical membrane dynamics depend on sequential and coordinated mechanotransduction events at both membrane domains of the umbrella cell.


2007 ◽  
Vol 292 (6) ◽  
pp. L1432-L1443 ◽  
Author(s):  
Horst Fischer ◽  
Beate Illek ◽  
Walter E. Finkbeiner ◽  
Jonathan H. Widdicombe

Salt and water absorption and secretion across the airway epithelium are important for maintaining the thin film of liquid lining the surface of the airway epithelium. Movement of Cl across the apical membrane involves the CFTR Cl channel; however, conductive pathways for Cl movement across the basolateral membrane have been little studied. Here, we determined the regulation and single-channel properties of the Cl conductance ( GCl) in airway surface epithelia using epithelial cultures from human or bovine trachea and freshly isolated ciliated cells from the human nasal epithelium. In Ussing chamber studies, a swelling-activated basolateral GCl was found, which was further stimulated by forskolin and blocked by N-phenylanthranilic acid (DPC) = sucrose > flufenamic acid = niflumic acid = glibenclamide > CdCl2 = 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) = DIDS = ZnCl2 > tamoxifen > 4,4′-dinitro-2,2′-stilbene-disulfonate disodium salt (DNDS). In whole cell patch-clamp experiments, three types of GCl were identified: 1) a voltage-activated, DIDS- (but not Cd-) blockable and osmosensitive GCl; 2) an inwardly rectifying, hyperpolarization-activated and Cd-sensitive GCl; and 3) a forskolin-activated, linear GCl, which was insensitive to Cd and DIDS. In cell-attached patch-clamp recordings, the basolateral pole of isolated ciliated cells expressed three types of Cl channels: 1) an outwardly rectifying, swelling-activated Cl channel; 2) a strongly inwardly rectifying Cl channel; and 3) a forskolin-activated, low-conductance channel. We propose that, depending on the driving force for Cl across the apical membrane, basolateral Cl channels confine Cl− secretion or support transcellular Cl− absorption.


Sign in / Sign up

Export Citation Format

Share Document