Ion Transfer Across Water/Organic Phase Boundaries and Analytical Applications

Author(s):  
J. Koryta
2020 ◽  
Author(s):  
Vishwanath R.S ◽  
Masa-aki Haga ◽  
Takumi Watanabe ◽  
Emilia Witkowska Nery ◽  
Martin Jönsson-Niedziolka

Here we describe the synthesis and electrochemical testing of a heteroleptic bis(tridentate) ruthenium(II) complex [Ru<sup>II</sup>(LR)(L)]<sup>0</sup> (LR =2,6-bis(1-(2-octyldodecan)benzimidazol-2-yl)pyridine, L = 2,6-bis(benzimidazolate)pyridine). It is a neutral complex which undergoes a quasireversible oxidation and reduction at relatively low potential. The newly synthetized compound was used for studies of ion-transfer at the three-phase junction because of the sensitivity of this method to cation expulsion. The [Ru<sup>II</sup>(LR)(L)]<sup>0</sup> shows exceptional stability during cycling and is sufficiently lipophilic even after oxidation to persist in the organic phase also using very hydrophilic anions such as Cl<sup>−</sup>. Given its low redox potential and strong lipophilicity this compound will be of interest as an electron donor in liquid-liquid electrochemistry.


2020 ◽  
Author(s):  
Vishwanath R.S ◽  
Masa-aki Haga ◽  
Takumi Watanabe ◽  
Emilia Witkowska Nery ◽  
Martin Jönsson-Niedziolka

Here we describe the synthesis and electrochemical testing of a heteroleptic bis(tridentate) ruthenium(II) complex [Ru<sup>II</sup>(LR)(L)]<sup>0</sup> (LR =2,6-bis(1-(2-octyldodecan)benzimidazol-2-yl)pyridine, L = 2,6-bis(benzimidazolate)pyridine). It is a neutral complex which undergoes a quasireversible oxidation and reduction at relatively low potential. The newly synthetized compound was used for studies of ion-transfer at the three-phase junction because of the sensitivity of this method to cation expulsion. The [Ru<sup>II</sup>(LR)(L)]<sup>0</sup> shows exceptional stability during cycling and is sufficiently lipophilic even after oxidation to persist in the organic phase also using very hydrophilic anions such as Cl<sup>−</sup>. Given its low redox potential and strong lipophilicity this compound will be of interest as an electron donor in liquid-liquid electrochemistry.


2020 ◽  
Author(s):  
Vishwanath R.S ◽  
Masa-aki Haga ◽  
Takumi Watanabe ◽  
Emilia Witkowska Nery ◽  
Martin Jönsson-Niedziolka

Here we describe the synthesis and electrochemical testing of a heteroleptic bis(tridentate) ruthenium(II) complex [Ru<sup>II</sup>(LR)(L)]<sup>0</sup> (LR =2,6-bis(1-(2-octyldodecan)benzimidazol-2-yl)pyridine, L = 2,6-bis(benzimidazolate)pyridine). It is a neutral complex which undergoes a quasireversible oxidation and reduction at relatively low potential. The newly synthetized compound was used for studies of ion-transfer at the three-phase junction because of the sensitivity of this method to cation expulsion. The [Ru<sup>II</sup>(LR)(L)]<sup>0</sup> shows exceptional stability during cycling and is sufficiently lipophilic even after oxidation to persist in the organic phase also using very hydrophilic anions such as Cl<sup>−</sup>. Given its low redox potential and strong lipophilicity this compound will be of interest as an electron donor in liquid-liquid electrochemistry.


1989 ◽  
Vol 93 (25) ◽  
pp. 8204-8212 ◽  
Author(s):  
Thomas Wandlowski ◽  
Vladimir Marecek ◽  
Karel Holub ◽  
Zdenek Samec

1997 ◽  
Vol 12 (1) ◽  
pp. 53-75 ◽  
Author(s):  
Emmanuel I. Iwuoha ◽  
Malcolm R. Smyth ◽  
Michael E.G. Lyons

2007 ◽  
Vol 111 (49) ◽  
pp. 18353-18360 ◽  
Author(s):  
Roohollah Torabi Kachoosangi ◽  
Lei Xiao ◽  
Gregory G. Wildgoose ◽  
Frank Marken ◽  
Philip C. Bulman Page ◽  
...  

Author(s):  
Y. Kouh Simpson ◽  
C. B. Carter

The structure of spinel/alumina phase boundaries has recently been studied using the selected- area diffraction technique. It has been found that there exist several dominant topotactic relationships; of these, the two most common situations are when the {111} plane of spinel is parallel to either the (0001) plane or the {1120} plane of alumina. In both of these cases, it has been found that there is often a small rotation from exact topotaxy (typically 0° to 2° but with larger rotations possible) which partially eliminates the need for misfit dislocations. This rotation is a special phenomenon that may be unique to non-metallic interfaces such as phase boundaries in ceramics. In this report, a special spinel/alumina interface in which a large rotation from the exact topotaxy exists between the (111) plane of spinel and the (OOOl) plane of alumina is discussed.


Author(s):  
P. J. Goodhew

Cavity nucleation and growth at grain and phase boundaries is of concern because it can lead to failure during creep and can lead to embrittlement as a result of radiation damage. Two major types of cavity are usually distinguished: The term bubble is applied to a cavity which contains gas at a pressure which is at least sufficient to support the surface tension (2g/r for a spherical bubble of radius r and surface energy g). The term void is generally applied to any cavity which contains less gas than this, but is not necessarily empty of gas. A void would therefore tend to shrink in the absence of any imposed driving force for growth, whereas a bubble would be stable or would tend to grow. It is widely considered that cavity nucleation always requires the presence of one or more gas atoms. However since it is extremely difficult to prepare experimental materials with a gas impurity concentration lower than their eventual cavity concentration there is little to be gained by debating this point.


Sign in / Sign up

Export Citation Format

Share Document