Whole-Cell Patch Recording with Simultaneous Measurement of Intracellular Calcium Concentration in Mammalian Brain Slices in Vitro

Author(s):  
Steven R. Glaum ◽  
Simon Alford ◽  
David J. Rossi ◽  
Graham L. Collingridge ◽  
N. Traverse Slater
2015 ◽  
Vol 36 (4) ◽  
pp. 1597-1612 ◽  
Author(s):  
Lei Liu ◽  
Chao Wang ◽  
Dianjun Sun ◽  
Shuangquan Jiang ◽  
Hong Li ◽  
...  

Background/Aims: Intracellular calcium concentration ([Ca2+]i) homeostasis, an initial factor of cardiac hypertrophy, is regulated by the calcium-sensing receptor (CaSR) and is associated with the formation of autolysosomes. The aim of this study was to investigate the role of Calhex231, a CaSR inhibitor, on the hypertrophic response via autophagy modulation. Methods: Cardiac hypertrophy was induced by transverse aortic constriction (TAC) in 40 male Wistar rats, while 10 rats underwent a sham operation and served as controls. Cardiac function was monitored by transthoracic echocardiography, and the hypertrophy index was calculated. Cardiac tissue was stained with hematoxylin and eosin (H&E) or Masson's trichrome reagent and examined by transmission electron microscopy. An angiotensin II (Ang II)-induced cardiomyocyte hypertrophy model was established and used to test the involvement of active molecules. Intracellular calcium concentration ([Ca2+]i) was determined by the introduction of Fluo-4/AM dye followed by confocal microscopy. The expression of various active proteins was analyzed by western blot. Results: The rats with TAC-induced hypertrophy had an increased heart size, ratio of heart weight to body weight, myocardial fibrosis, and CaSR and autophagy levels, which were suppressed by Calhex231. Experimental results using Ang II-induced hypertrophic cardiomyocytes confirmed that Calhex231 suppressed CaSR expression and downregulated autophagy by inhibiting the Ca2+/calmodulin-dependent-protein kinase-kinase-β (CaMKKβ)- AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR) pathway to ameliorate cardiomyocyte hypertrophy. Conclusions: Calhex231 ameliorates myocardial hypertrophy induced by pressure-overload or Ang II via inhibiting CaSR expression and autophagy. Our results may support the notion that Calhex231 can become a new therapeutic agent for the treatment of cardiac hypertrophy.


1998 ◽  
Vol 79 (3) ◽  
pp. 1321-1328 ◽  
Author(s):  
Jerzy W. Mozrzymas ◽  
Enrico Cherubini

Mozrzymas, Jerzy W. and Enrico Cherubini. Changes in intracellular calcium concentration affect desensitization of GABAA receptors in acutely dissociated P2–P6 rat hippocampal neurons. J. Neurophysiol. 79: 1321–1328, 1998. The whole cell configuration of the patch-clamp technique was used to study the effects of different cytosolic calcium concentrations [Ca2+]i on desensitization kinetics of γ-aminobutyric acid (GABA)-activated receptors in acutely dissociated rat hippocampal neurons. Two different intrapipette concentrations of the calcium chelator 1,2-bis(2-aminophenoxy)ethane- N, N, N′, N′-tetraacetic acid (BAPTA; 11 and 0.9 mM, respectively) were used to yield a low (1.2 × 10−8 M) or a high (2.2 × 10−6 M) [Ca2+]i. In low [Ca2+]i, peak values of GABA-evoked currents (20 μM) evoked at −30 mV, were significantly larger than those recorded in high calcium [2,970 ± 280 (SE) pA vs. 1,870 ± 150 pA]. The extent of desensitization, assessed from steady-state to peak ratio was significantly higher in high calcium conditions (0.14 ± 0.007 vs. 0.11 ± 0.008). Similar effects of [Ca2+]i on desensitization were observed with GABA (100 μM). Recovery from desensitization, measured at 30 s interval with double pulse protocol was significantly slower in high [Ca2+]i than in low [Ca2+]i (54 ± 3% vs. 68 ± 2%). The current-voltage relationship of GABA-evoked currents was linear in the potential range between −50 and 50 mV. The kinetics of desensitization process including the rate of onset, extent of desensitization, and recovery were voltage independent. The run down of GABA-evoked currents was faster with the higher intracellular calcium concentration. The run down process was accompanied by changes in desensitization kinetics: in both high and low [Ca2+]i desensitization rate was progressively increasing with time as the slow component of the desensitization onset was converted into the fast one. In excised patches, the desensitization kinetics was much faster and more profound than in the whole cell configuration, indicating the involvement of intracellular factors in regulation of this process. In conclusion, [Ca2+]i affects the desensitization of GABAA receptors possibly by activating calcium-dependent enzymes that regulate their phosphorylation state. This may lead to modifications in cell excitability because of changes in GABA-mediated synaptic currents.


2010 ◽  
Vol 104 (6) ◽  
pp. 3203-3212 ◽  
Author(s):  
Helen M. Gniel ◽  
Rosemary L. Martin

Cortical spreading depression (CSD) is an episode of electrical silence following intense neuronal activity that propagates across the cortex at ∼3–6 mm/min and is associated with transient neuronal depolarization. CSD is benign in normally perfused brain tissue, but there is evidence suggesting that repetitive CSD contributes to infarct growth following focal ischemia. Studies to date have assumed that the cellular responses to CSD are uniform across neuronal types because there are no data to the contrary. In this study, we investigated the effect of CSD on membrane potential and the intracellular calcium concentration ([Ca2+]i) of mouse layer V and layer II/III pyramidal neurons in brain slices. To place the data in context, we made similar measurements during anoxic depolarization induced by oxygen and glucose deprivation (OGD). The [Ca2+]i was quantified using the low-affinity ratiometric indicator Fura-4F. During both CSD- and OGD-induced depolarization, the membrane potential approached 0 mV in all neurons. In layer V pyramids OGD resulted in an increase in [Ca2+]i to a maximum of 3.69 ± 0.73 (SD) μM ( n = 12), significantly greater than the increase to 1.81 ± 0.70 μM in CSD ( n = 34; P < 0.0001). Membrane potential and [Ca2+]i returned to nearly basal levels following CSD but not OGD. Layer II/III neurons responded to CSD with a greater peak increase in [Ca2+]i than layer V neurons (2.88 ± 0.6 μM; n = 9; P < 0.01). We conclude there is a laminar difference in the response of pyramidal neurons to CSD; possible explanations are discussed.


1994 ◽  
Vol 41 (1) ◽  
pp. 259 ◽  
Author(s):  
J. Mizuno ◽  
K. Nakada ◽  
K. Endo ◽  
K. Kobayashi ◽  
Y. Nishikata ◽  
...  

2001 ◽  
Vol 280 (3) ◽  
pp. H1088-H1096 ◽  
Author(s):  
Alexander Schuster ◽  
Hirotaka Oishi ◽  
Jean-Louis Bény ◽  
Nikolaos Stergiopulos ◽  
Jean-Jacques Meister

The goal of the present study was to analyze the intercellular calcium communication between smooth muscle cells (SMCs) and endothelial cells (ECs) by simultaneously monitoring artery diameter and intracellular calcium concentration in a rat mesenteric arterial segment in vitro under physiological pressure (50 mmHg) and flow (50 μl/min) in a specially developed system. Intracellular calcium was expressed as the fura 2 ratio. The diameter was measured using a digital image acquisition system. Stimulation of SMCs with the α1-agonist phenylephrine (PE) caused not only an increase in the free intracellular calcium concentration of the SMCs as expected but also in the ECs, suggesting a calcium flux from the SMCs to the ECs. The gap junction uncoupler palmitoleic acid greatly reduced this increase in calcium in the ECs on stimulation of the SMCs with PE. This indicates that the signaling pathway passes through the gap junctions. Similarly, although vasomotion originates in the SMCs, calcium oscillates in both SMCs and ECs during vasomotion, suggesting again a calcium flux from the SMCs to the ECs.


Sign in / Sign up

Export Citation Format

Share Document