Refinement of the Structure of a Water-Soluble Antenna Complex from Green Photosynthetic Bacteria by Incorporation of the Chemically Determined Amino Acid Sequence

Author(s):  
Dale E. Tronrud ◽  
Brian W. Matthews
2000 ◽  
Vol 68 (5) ◽  
pp. 2475-2483 ◽  
Author(s):  
Taku Fujiwara ◽  
Tomonori Hoshino ◽  
Takashi Ooshima ◽  
Shizuo Sobue ◽  
Shigeyuki Hamada

ABSTRACT Streptococcus oralis is a member of the oral streptococcal family and an early-colonizing microorganism in the oral cavity of humans. S. oralis is known to produce glucosyltransferase (GTase), which synthesizes glucans from sucrose. The enzyme was purified chromatographically from a culture supernatant of S. oralis ATCC 10557. The purified enzyme, GTase-R, had a molecular mass of 173 kDa and a pI of 6.3. This enzyme mainly synthesized water-soluble glucans with no primer dependency. The addition of GTase markedly enhanced the sucrose-dependent resting cell adhesion of Streptococcus mutans at a level similar to that found in growing cells of S. mutans. The antibody against GTase-R inhibited the glucan-synthesizing activities ofStreptococcus gordonii and Streptococcus sanguis, as well as S. oralis. The N-terminal amino acid sequence of GTase-R exhibited no similarities to known GTase sequences of oral streptococci. Using degenerate PCR primers, an 8.1-kb DNA fragment, carrying the gene (gtfR) coding for GTase-R and its regulator gene (rgg), was cloned and sequenced. Comparison of the deduced amino acid sequence revealed that thergg genes of S. oralis and S. gordonii exhibited a close similarity. The gtfR gene was found to possess a species-specific nucleotide sequence corresponding to the N-terminal 130 amino acid residues. Insertion oferm or aphA into the rgg orgtfR gene resulted in decreased GTase activity by the organism and changed the colony morphology of these transformants. These results indicate that S. oralis GTase may play an important role in the subsequent colonizing of mutans streptoccoci.


2007 ◽  
Vol 189 (11) ◽  
pp. 4196-4203 ◽  
Author(s):  
Allison M. L. van de Meene ◽  
Tien Le Olson ◽  
Aaron M. Collins ◽  
Robert E. Blankenship

ABSTRACT “Candidatus Chlorothrix halophila” is a recently described halophilic, filamentous, anoxygenic photoautotroph (J. A. Klappenbach and B. K. Pierson, Arch. Microbiol. 181:17-25, 2004) that was enriched from the hypersaline microbial mats at Guerrero Negro, Mexico. Analysis of the photosynthetic apparatus by negative staining, spectroscopy, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the photosynthetic apparatus in this organism has similarities to the photosynthetic apparatus in both the Chloroflexi and Chlorobi phyla of green photosynthetic bacteria. The chlorosomes were found to be ellipsoidal and of various sizes, characteristics that are comparable to characteristics of chlorosomes in other species of green photosynthetic bacteria. The absorption spectrum of whole cells was dominated by the chlorosome bacteriochlorophyll c (BChl c) peak at 759 nm, with fluorescence emission at 760 nm. A second fluorescence emission band was observed at 870 nm and was tentatively attributed to a membrane-bound antenna complex. Fluorescence emission spectra obtained at 77 K revealed another complex that fluoresced at 820 nm, which probably resulted from the chlorosome baseplate complex. All of these results suggest that BChl c is present in the chlorosomes of “Ca. Chlorothrix halophila,” that BChl a is present in the baseplate, and that there is a membrane-bound antenna complex. Analysis of the proteins in the chlorosomes revealed an ∼6-kDa band, which was found to be related to the BChl c binding protein CsmA found in other green bacteria. Overall, the absorbance and fluorescence spectra of “Ca. Chlorothrix halophila” revealed an interesting mixture of photosynthetic characteristics that seemed to have properties similar to properties of both phyla of green bacteria when they were compared to the photosynthetic characteristics of Chlorobium tepidum and Chloroflexus aurantiacus.


Author(s):  
M.K. Lamvik ◽  
L.L. Klatt

Tropomyosin paracrystals have been used extensively as test specimens and magnification standards due to their clear periodic banding patterns. The paracrystal type discovered by Ohtsuki1 has been of particular interest as a test of unstained specimens because of alternating bands that differ by 50% in mass thickness. While producing specimens of this type, we came across a new paracrystal form. Since this new form displays aligned tropomyosin molecules without the overlaps that are characteristic of the Ohtsuki-type paracrystal, it presents a staining pattern that corresponds to the amino acid sequence of the molecule.


1989 ◽  
Vol 61 (03) ◽  
pp. 437-441 ◽  
Author(s):  
Cindra Condra ◽  
Elka Nutt ◽  
Christopher J Petroski ◽  
Ellen Simpson ◽  
P A Friedman ◽  
...  

SummaryThe present work reports the discovery and charactenzation of an anticoagulant protein in the salivary gland of the giant bloodsucking leech, H. ghilianii, which is a specific and potent inhibitor of coagulation factor Xa. The inhibitor, purified to homogeneity, displayed subnanomolar inhibition of bovine factor Xa and had a molecular weight of approximately 15,000 as deduced by denaturing SDS-PAGE. The amino acid sequence of the first 43 residues of the H. ghilianii derived inhibitor displayed a striking homology to antistasin, the recently described subnanomolar inhibitor of factor Xa isolated from the Mexican leech, H. officinalis. Antisera prepared to antistasin cross-reacted with the H. ghilianii protein in Western Blot analysis. These data indicate that the giant Amazonian leech, H. ghilianii, and the smaller Mexican leech, H. officinalrs, have similar proteins which disrupt the normal hemostatic clotting mechanisms in their mammalian host’s blood.


1993 ◽  
Vol 69 (03) ◽  
pp. 217-220 ◽  
Author(s):  
Jonathan B Rosenberg ◽  
Peter J Newman ◽  
Michael W Mosesson ◽  
Marie-Claude Guillin ◽  
David L Amrani

SummaryParis I dysfibrinogenemia results in the production of a fibrinogen molecule containing a functionally abnormal γ-chain. We determined the basis of the molecular defect using polymerase chain reaction (PCR) to amplify the γ-chain region of the Paris I subject’s genomic DNA. Comparative sequence analysis of cloned PCR segments of normal and Paris I genomic DNA revealed only an A→G point mutation occurring at nucleotide position 6588 within intron 8 of the Paris I γ-chain gene. We examined six normal individuals and found only normal sequence in this region, indicating that this change is not likely to represent a normal polymorphism. This nucleotide change leads to a 45 bp fragment being inserted between exons 8 and 9 in the mature γparis I chain mRNA, and encodes a 15 amino acid insert after γ350 [M-C-G-E-A-L-P-M-L-K-D-P-C-Y]. Alternative splicing of this region from intron 8 into the mature Paris I γ-chain mRNA also results after translation into a substitution of S for G at position γ351. Biochemical studies of 14C-iodoacetamide incorporation into disulfide-reduced Paris I and normal fibrinogen corroborated the molecular biologic predictions that two additional cysteine residues exist within the γpariS I chain. We conclude that the insertion of this amino acid sequence leads to a conformationallyaltered, and dysfunctional γ-chain in Paris I fibrinogen.


1979 ◽  
Vol 42 (05) ◽  
pp. 1652-1660 ◽  
Author(s):  
Francis J Morgan ◽  
Geoffrey S Begg ◽  
Colin N Chesterman

SummaryThe amino acid sequence of the subunit of human platelet factor 4 has been determined. Human platelet factor 4 consists of identical subunits containing 70 amino acids, each with a molecular weight of 7,756. The molecule contains no methionine, phenylalanine or tryptophan. The proposed amino acid sequence of PF4 is: Glu-Ala-Glu-Glu-Asp-Gly-Asp-Leu-Gln-Cys-Leu-Cys-Val-Lys-Thr-Thr-Ser- Gln-Val-Arg-Pro-Arg-His-Ile-Thr-Ser-Leu-Glu-Val-Ile-Lys-Ala-Gly-Pro-His-Cys-Pro-Thr-Ala-Gin- Leu-Ile-Ala-Thr-Leu-Lys-Asn-Gly-Arg-Lys-Ile-Cys-Leu-Asp-Leu-Gln-Ala-Pro-Leu-Tyr-Lys-Lys- Ile-Ile-Lys-Lys-Leu-Leu-Glu-Ser. From consideration of the homology with p-thromboglobulin, disulphide bonds between residues 10 and 36 and between residues 12 and 52 can be inferred.


Sign in / Sign up

Export Citation Format

Share Document