Clostridium perfringens∗∗Mention of brand or firm name does not constitute an endorsement by the U.S. Department of Agriculture over others of a similar nature not mentioned.

2017 ◽  
pp. 235-242 ◽  
Author(s):  
R.G. Labbe ◽  
V.K. Juneja
2003 ◽  
Vol 66 (3) ◽  
pp. 501-503 ◽  
Author(s):  
ROBERT J. DANLER ◽  
ELIZABETH A. E. BOYLE ◽  
CURTIS L. KASTNER ◽  
HARSHAVARDHAN THIPPAREDDI ◽  
DANIEL Y. C. FUNG ◽  
...  

Cooked, chilled beef and cooked, chilled pork were inoculated with three strains of Clostridium perfringens (NCTC 8238 [Hobbs serotype 2], NCTC 8239 [Hobbs serotype 3], and NCTC 10240). Inoculated products were heated to 75°C, held for 10 min in a circulating water bath to heat activate the spores, and then chilled by circulating chilled brine through the water bath. Samples were chilled from 54.4 to 26.6°C in 2 h and from 26.6 to 4.4°C in 5 h. Differences in initial C. perfringens log counts and log counts after chilling were determined and compared with the U.S. Department of Agriculture (USDA) stabilization guidelines requiring that the chilling process allow no more than 1 log total growth of C. perfringens in the finished product. This chilling method resulted in average C. perfringens increases of 0.52 and 0.68 log units in cooked beef and cooked pork, respectively. These log increases were well within the maximum 1-log increase permitted by the USDA, thus meeting the USDA compliance guidelines for the cooling of heat-treated meat and poultry products.


2004 ◽  
Vol 67 (9) ◽  
pp. 1840-1847 ◽  
Author(s):  
J. R. SABAH ◽  
V. K. JUNEJA ◽  
D. Y. C. FUNG

This study evaluated the effect of organic acids and spices, alone or combined, on Clostridium perfringens growth in cooked ground beef during alternative cooling procedures. Ground beef was inoculated with a three-strain cocktail of C. perfringens (ATCC 10388, NCTC 8238, and NCTC 8239) at 2 log spores per g and prepared following an industrial recipe (10% water, 1.5% sodium chloride, and 0.5% sodium triphosphate [wt/wt]). Treatments consisted of the base meat plus combinations of commercial solutions of sodium lactate or sodium citrate (0 or 2%, wt/wt) with chili, garlic and herbs, curry, oregano, or clove in commercial powder form (0 or 1%, wt/wt). Untreated meat was used as a control. Vacuum-packaged samples of each treatment were cooked (75°C for 20 min) and cooled from 54.4 to 7.2°C in 15, 18, or 21 h. Spore counts were estimated after inoculation, cooking, and cooling. All treatments containing sodium citrate reduced the population of C. perfringens about 0.38 to 1.14 log units during each of the three cooling procedures. No sodium citrate and spice treatment combinations showed antagonisms or synergisms. Regardless of the cooling time, the control ground beef or treatments with any of the five spices alone supported C. perfringens growth above the U.S. Department of Agriculture stabilization guidelines of 1 log unit. Except for the 21-h cooling period, addition of sodium lactate prevented C. perfringens growth over 1 log unit. Depending on the cooling time and spice, some combinations of sodium lactate and spice kept C. perfringens growth below 1 log unit.


2004 ◽  
Vol 67 (6) ◽  
pp. 1133-1137 ◽  
Author(s):  
SARAH SMITH ◽  
DONALD W. SCHAFFNER

Proper temperature control is essential in minimizing Clostridium perfringens germination, growth, and toxin production. The U.S. Department of Agriculture Food Safety and Inspection Service offers two options for the cooling of meat products: follow a standard time-temperature schedule or validate that alternative cooling regimes result in no more than a 1-log CFU/g increase of C. perfringens and no growth of Clostridium botulinum. The Juneja 1999 model for C. perfringens growth during cooling may be helpful in determining whether the C. perfringens performance standard has been achieved, but this model has not been extensively validated. The objective of this study was to validate the Juneja 1999 model under a variety of temperature situations. The Juneja 1999 model for C. perfringens growth during cooling is fail safe when low (<1 log CFU/ml) or high (>3 log CFU/ml) observed increases occur during exponential cooling. The Juneja 1999 model consistently underpredicted growth at intermediate observed increases (1 to 3 log CFU/ml). The Juneja 1999 model also underpredicted growth whenever exponential cooling took place at two different rates in the first and second portions of the cooling process. This error may be due to faster than predicted growth of C. perfringens cells during cooling or to an inaccuracy in the Juneja 1999 model.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Javier Ho ◽  
Paul Bernal

AbstractThis study attempts to fit a global demand model for soybean traffic through the Panama Canal using Ordinary Least Square. Most of the soybean cargo through the interoceanic waterway is loaded on the U.S. Gulf and East Coast ports -mainly destined to East Asia, especially China-, and represented about 34% of total Panama Canal grain traffic between fiscal years 2010–19. To estimate the global demand model for soybean traffic, we are considering explanatory variables such as effective toll rates through the Panama Canal, U.S. Gulf- Asia and U.S. Pacific Northwest- Asia freight rates, Baltic Dry Index, bunker costs, soybean export inspections from the U.S. Gulf and Pacific Northwest, U.S. Gulf soybean basis levels, Brazil’s soybean exports and average U.S. dollar index. As part of the research, we are pursuing the estimation of the toll rate elasticity of vessels transporting soybeans via the Panama Canal. Data come mostly from several U.S. Department of Agriculture sources, Brazil’s Secretariat of Foreign Trade (SECEX) and from Panama Canal transit information. Finally, after estimation of the global demand model for soybean traffic, we will discuss the implications for future soybean traffic through the waterway, evaluating alternative routes and sources for this trade.


HortScience ◽  
2018 ◽  
Vol 53 (11) ◽  
pp. 1560-1561 ◽  
Author(s):  
Lisa L. Baxter ◽  
Brian M. Schwartz

Bermudagrass (Cynodon spp.) is the foundation of the turfgrass industry in most tropical and warm-temperate regions. Development of bermudagrass as a turfgrass began in the early 1900s. Many of the cultivars commercially available today have been cooperatively released by the U.S. Department of Agriculture Agricultural Research Service (USDA-ARS) and the University of Georgia at the Coastal Plain Experiment Station in Tifton, GA.


2018 ◽  
Vol 19 (3) ◽  
pp. 258-264
Author(s):  
David H. Gent ◽  
Briana J. Claassen ◽  
Megan C. Twomey ◽  
Sierra N. Wolfenbarger

Powdery mildew (caused by Podosphaera macularis) is one of the most important diseases of hop in the western United States. Strains of the fungus virulent on cultivars possessing the resistance factor termed R6 and the cultivar Cascade have become widespread in the Pacific Northwestern United States, the primary hop producing region in the country, rendering most cultivars grown susceptible to the disease at some level. In an effort to identify potential sources of resistance in extant germplasm, 136 male accessions of hop contained in the U.S. Department of Agriculture collection were screened under controlled conditions. Iterative inoculations with three isolates of P. macularis with varying race identified 23 (16.9%) accessions with apparent resistance to all known races of the pathogen present in the Pacific Northwest. Of the 23 accessions, 12 were resistant when inoculated with three additional isolates obtained from Europe that possess novel virulences. The nature of resistance in these individuals is unclear but does not appear to be based on known R genes. Identification of possible novel sources of resistance to powdery mildew will be useful to hop breeding programs in the western United States and elsewhere.


Sign in / Sign up

Export Citation Format

Share Document