Effect of Spices and Organic Acids on the Growth of Clostridium perfringens during Cooling of Cooked Ground Beef†‡

2004 ◽  
Vol 67 (9) ◽  
pp. 1840-1847 ◽  
Author(s):  
J. R. SABAH ◽  
V. K. JUNEJA ◽  
D. Y. C. FUNG

This study evaluated the effect of organic acids and spices, alone or combined, on Clostridium perfringens growth in cooked ground beef during alternative cooling procedures. Ground beef was inoculated with a three-strain cocktail of C. perfringens (ATCC 10388, NCTC 8238, and NCTC 8239) at 2 log spores per g and prepared following an industrial recipe (10% water, 1.5% sodium chloride, and 0.5% sodium triphosphate [wt/wt]). Treatments consisted of the base meat plus combinations of commercial solutions of sodium lactate or sodium citrate (0 or 2%, wt/wt) with chili, garlic and herbs, curry, oregano, or clove in commercial powder form (0 or 1%, wt/wt). Untreated meat was used as a control. Vacuum-packaged samples of each treatment were cooked (75°C for 20 min) and cooled from 54.4 to 7.2°C in 15, 18, or 21 h. Spore counts were estimated after inoculation, cooking, and cooling. All treatments containing sodium citrate reduced the population of C. perfringens about 0.38 to 1.14 log units during each of the three cooling procedures. No sodium citrate and spice treatment combinations showed antagonisms or synergisms. Regardless of the cooling time, the control ground beef or treatments with any of the five spices alone supported C. perfringens growth above the U.S. Department of Agriculture stabilization guidelines of 1 log unit. Except for the 21-h cooling period, addition of sodium lactate prevented C. perfringens growth over 1 log unit. Depending on the cooling time and spice, some combinations of sodium lactate and spice kept C. perfringens growth below 1 log unit.

2003 ◽  
Vol 66 (8) ◽  
pp. 1408-1412 ◽  
Author(s):  
J. R. SABAH ◽  
H. THIPPAREDDI ◽  
J. L. MARSDEN ◽  
D. Y. C. FUNG

This study was conducted to determine how well Clostridium perfringens spores germinate and grow in restructured roast beef treated with different commercial organic salts during an alternative chilling procedure. The meat was prepared according to an industrial recipe (10% water, 1.5% sodium chloride, and 0.5% sodium triphosphate). The base meat was treated with sodium citrate at 2 or 4.8% (wt/wt), buffered to a pH of 5.6, 5.0, or 4.4 (six treatments); a 60% (wt/wt) solution of sodium lactate at 2 or 4.8% (wt/wt); sodium acetate at 0.25% (wt/wt); or sodium diacetate at 0.25% (wt/wt). Untreated meat was used as a control. Meat samples were inoculated with a three-strain cocktail of C. perfringens spores (strains ATCC 10388, NCTC 8238, and NCTC 8239). Meat was vacuum packaged in bags and cooked in a stirred water bath to an internal temperature of 75°C for 20 min, and then the bags were cooled from 54.4 to 4.4°C within 18 h. Samples were taken after inoculation, after cooking, and after chilling. Spore and vegetative cell counts were obtained after incubation at 37°C for 8 to 10 h in Fung's Double Tubes containing tryptose sulfite agar without egg yolk enrichment. Cooking was not sufficient to eliminate C. perfringens spores. Over the 18-h cooling period, sodium citrate, sodium lactate, and sodium diacetate reduced the growth of C. perfringens to <1 log unit, a growth level that meets U.S. Department of Agriculture performance standards. The use of sodium citrate or sodium lactate at a concentration of ≥2% (wt/wt) inhibited C. perfringens growth over the 18-h cooling period.


2008 ◽  
Vol 71 (1) ◽  
pp. 77-82 ◽  
Author(s):  
SHAKHLO N. YARBAEVA ◽  
PADMANABHA R. VELUGOTI ◽  
HARSHAVARDHAN THIPPAREDDI ◽  
JULIE A. ALBRECHT

Clostridium perfringens spore destruction, aerobic plate counts (APCs), and counts of Enterobacteriaceae, coliforms, and Escherichia coli during baking of sambusa (a traditional Tajik food) were evaluated. Control of germination and outgrowth of C. perfringens spores in sambusa during cooling at room or refrigerated temperatures was evaluated using organic acid salts (buffered sodium citrate [Ional] and 1 and 2% potassium lactate, wt/wt). Sambusa were prepared with 40 g of either inoculated or noninoculated meat and baked for 45 min at 180°C. For evaluation of destruction of C. perfringens spores during heating and germination and outgrowth of spores during cooling, ground beef was inoculated and mixed with a three-strain cocktail of C. perfringens spores. Aerobic bacteria, Enterobacteriaceae, coliforms, and E. coli were enumerated in noninoculated sambusa before and after baking and after cooling at room or refrigeration temperatures. After baking, APCs and Enterobacteriaceae and coliform counts were reduced by 4.32, 2.55, and 1.96 log CFU/g, respectively. E. coli counts were below detectable levels in ground beef and sambusa samples. Enterobacteriaceae, coliform, and E. coli counts were below detectable levels (<0.04 log CFU/g) in sambusa after cooling by both methods. Total C. perfringens populations increased (4.67 log CFU/g) during cooling at room temperature, but minimal increases (0.31 log CFU/g) were observed during cooling under refrigeration. Incorporation of 2% (wt/wt) buffered sodium citrate controlled C. perfringens spore germination and outgrowth (0.25 log CFU/g), whereas incorporation of up to 2% (wt/wt) potassium lactate did not prevent C. perfringens spore germination and outgrowth. Incorporation of organic acid salts at appropriate concentrations can prevent germination and outgrowth of C. perfringens in improperly cooled sambusa.


2005 ◽  
Vol 68 (12) ◽  
pp. 2594-2605 ◽  
Author(s):  
MARCOS X. SÁNCHEZ-PLATA ◽  
ALEJANDRO AMÉZQUITA ◽  
ERIN BLANKENSHIP ◽  
DENNIS E. BURSON ◽  
VIJAY JUNEJA ◽  
...  

Spores of foodborne pathogens can survive traditional thermal processing schedules used in the manufacturing of processed meat products. Heat-activated spores can germinate and grow to hazardous levels when these products are improperly chilled. Germination and outgrowth of Clostridium perfringens spores in roast beef during chilling was studied following simulated cooling schedules normally used in the processed-meat industry. Inhibitory effects of organic acid salts on germination and outgrowth of C. perfringens spores during chilling and the survival of vegetative cells and spores under abusive refrigerated storage was also evaluated. Beef top rounds were formulated to contain a marinade (finished product concentrations: 1% salt, 0.2% potassium tetrapyrophosphate, and 0.2% starch) and then ground and mixed with antimicrobials (sodium lactate and sodium lactate plus 2.5% sodium diacetate and buffered sodium citrate and buffered sodium citrate plus 1.3% sodium diacetate). The ground product was inoculated with a three-strain cocktail of C. perfringens spores (NCTC 8238, NCTC 8239, and ATCC 10388), mixed, vacuum packaged, heat shocked for 20 min at 75°C, and chilled exponentially from 54.5 to 7.2°C in 9, 12, 15, 18, or 21 h. C. perfringens populations (total and spore) were enumerated after heat shock, during chilling, and during storage for up to 60 days at 10°C using tryptose-sulfite-cycloserine agar. C. perfringens spores were able to germinate and grow in roast beef (control, without any antimicrobials) from an initial population of ca. 3.1 log CFU/g by 2.00, 3.44, 4.04, 4.86, and 5.72 log CFU/g after 9, 12, 15, 18, and 21 h of exponential chilling. A predictive model was developed to describe sigmoidal C. perfringens growth curves during cooling of roast beef from 54.5 to 7.2°C within 9, 12, 15, 18, and 21 h. Addition of antimicrobials prevented germination and outgrowth of C. perfringens regardless of the chill times. C. perfringens spores could be recovered from samples containing organic acid salts that were stored up to 60 days at 10°C. Extension of chilling time to ≥9 h resulted in >1 log CFU/g growth of C. perfringens under anaerobic conditions in roast beef. Organic acid salts inhibited outgrowth of C. perfringens spores during chilling of roast beef when extended chill rates were followed. Although C. perfringens spore germination is inhibited by the antimicrobials, this inhibition may represent a hazard when such products are incorporated into new products, such as soups and chili, that do not contain these antimicrobials, thus allowing spore germination and outgrowth under conditions of temperature abuse.


2014 ◽  
Vol 97 (6) ◽  
pp. 1592-1600 ◽  
Author(s):  
Curtis H Stumpf ◽  
Weidong Zhao ◽  
Brian Bullard ◽  
Christine Ammons ◽  
Karl I Devlin ◽  
...  

Abstract The Crystal Diagnostics MultiPath System™ provides rapid detection of Escherichia coli O157 in fresh raw ground beef, raw beef trim, and spinach. The Crystal Diagnostics system combines patented Liquid Crystal technology with antibody-coated paramagnetic microspheres to selectively capture and detect E. coli O157 in food matrixes. This is the only liquid crystal-based biosensor commercially available for the detection of pathogens. The Crystal Diagnostics system expeditiously provides the sensitivity and accuracy of the U.S. Department of Agriculture Food Safety Inspection Service (USDA-FSIS) and the U.S. Food and Drug Administration Bacteriological Analytical Manual (FDA-BAM) methods for detecting as low as one CFU of E. coli O157 per 375 g of raw ground beef and raw beef trim, or 200 g of raw spinach. An internal inclusivity validation demonstrated detection of all 50 tested strains of E. coli O157. The internal and independent laboratory tests demonstrate that the method is rapid and sensitive for detecting of E. coli O157 in fresh raw ground beef, beef trim, and spinach.


2003 ◽  
Vol 66 (3) ◽  
pp. 501-503 ◽  
Author(s):  
ROBERT J. DANLER ◽  
ELIZABETH A. E. BOYLE ◽  
CURTIS L. KASTNER ◽  
HARSHAVARDHAN THIPPAREDDI ◽  
DANIEL Y. C. FUNG ◽  
...  

Cooked, chilled beef and cooked, chilled pork were inoculated with three strains of Clostridium perfringens (NCTC 8238 [Hobbs serotype 2], NCTC 8239 [Hobbs serotype 3], and NCTC 10240). Inoculated products were heated to 75°C, held for 10 min in a circulating water bath to heat activate the spores, and then chilled by circulating chilled brine through the water bath. Samples were chilled from 54.4 to 26.6°C in 2 h and from 26.6 to 4.4°C in 5 h. Differences in initial C. perfringens log counts and log counts after chilling were determined and compared with the U.S. Department of Agriculture (USDA) stabilization guidelines requiring that the chilling process allow no more than 1 log total growth of C. perfringens in the finished product. This chilling method resulted in average C. perfringens increases of 0.52 and 0.68 log units in cooked beef and cooked pork, respectively. These log increases were well within the maximum 1-log increase permitted by the USDA, thus meeting the USDA compliance guidelines for the cooling of heat-treated meat and poultry products.


2013 ◽  
Vol 76 (11) ◽  
pp. 1972-1976 ◽  
Author(s):  
KATHERINE M. KENNEDY ◽  
ANDREW L. MILKOWSKI ◽  
KATHLEEN A. GLASS

The U.S. Department of Agriculture's Food Safety and Inspection Service compliance guideline known as Appendix B specifies chilling time and temperature limits for cured and uncured meat products to inhibit growth of spore-forming bacteria, particularly Clostridium perfringens. Sodium lactate and potassium lactate inhibit toxigenic growth of Clostridium botulinum, and inhibition of C. perfringens has been reported. In this study, a cocktail of spores of three C. perfringens strains (ATCC 13124, ATCC 12915, and ATCC 12916) were inoculated into 100-g samples of ground skinless, boneless turkey breast formulated to represent deli-style turkey breast. Three treatment groups were supplemented with 0 (control), 1, or 2% potassium lactate (pure basis), cooked to 71°C, and assayed for C. perfringens growth during 10 or 12 h of linear cooling to 4°C. In control samples, populations of C. perfringens increased 3.8 to 4.7 log CFU/g during the two chilling protocols. The 1% potassium lactate treatment supported only a 2.5- to 2.7-log increase, and the 2% potassium lactate treatment limited growth to a 0.56- to 0.70-log increase. When compared with the control, 2% potassium lactate retarded growth by 2.65 and 4.21 log CFU/g for the 10- and 12-h cooling protocols, respectively. These results confirm that the addition of 2% potassium lactate inhibits growth of C. perfringens and that potassium lactate can be used as an alternative to sodium nitrite for safe extended cooling of uncured meats.


2012 ◽  
Vol 75 (6) ◽  
pp. 1131-1133 ◽  
Author(s):  
ASHLEY N. HANEKLAUS ◽  
KERRI B. HARRIS ◽  
DAVEY B. GRIFFIN ◽  
THOMAS S. EDRINGTON ◽  
LISA M. LUCIA ◽  
...  

Lymphatic tissue, specifically lymph nodes, is commonly incorporated into ground beef products as a component of lean trimmings. Salmonella and other pathogenic bacteria have been identified in bovine lymph nodes, which may impact compliance with the Salmonella performance standards for ground beef established by the U.S. Department of Agriculture. Although Salmonella prevalence has been examined among lymph nodes between animals, no data are currently available regarding feedyard origin of the cattle and Salmonella prevalence. Bovine lymph nodes (279 superficial cervical plus 28 iliofemoral = 307) were collected from beef carcasses at a commercial beef harvest and processing plant over a 3-month period and examined for the prevalence of Salmonella. Cattle processed were from seven feedyards (A through G). Salmonella prevalence was exceptionally low (0% of samples were positive ) in cattle from feedyard A and high (88.2%) in cattle from feedyard B. Prevalence in the remaining feedyards ranged widely: 40.0% in feedyard C, 4.0% in feedyard D, 24.0% in feedyard E, 42.9% in feedyard F, and 40.0% in feedyard G. These data indicate the range of differences in Salmonella prevalence among feedyards. Such information may be useful for developing interventions to reduce or eliminate Salmonella from bovine lymph nodes, which would assist in the reduction of Salmonella in ground beef.


2017 ◽  
Vol 80 (10) ◽  
pp. 1697-1704 ◽  
Author(s):  
Katie J. Osterbauer ◽  
Amanda M King ◽  
Dennis L Seman ◽  
Andrew L. Milkowski ◽  
Kathleen A. Glass ◽  
...  

ABSTRACT To control the growth of Clostridium perfringens in cured meat products, the meat and poultry industries commonly follow stabilization parameters outlined in Appendix B, “Compliance Guidelines for Cooling Heat-Treated Meat and Poultry Products (Stabilization)” (U.S. Department of Agriculture, Food Safety and Inspection Service [USDA-FSIS], 1999) to achieve cooling (54.4 to 4.4°C) within 15 h after cooking. In this study, extended cooling times and their impact on C. perfringens growth were examined. Phase 1 experiments consisted of cured ham with 200 mg/kg ingoing sodium nitrite and 547 mg/kg sodium erythorbate following five bilinear cooling profiles: a control (following Appendix B guidelines: stage A cooling [54.4 to 26.7°C] for 5 h, stage B cooling [26.7 to 4.4°C] for 10 h), extended stage A cooling for 7.5 or 10 h, and extended stage B cooling for 12.5 or 15 h. A positive growth control with 0 mg/kg nitrite added (uncured) was also included. No growth was observed in any treatment samples except the uncured control (4.31-log increase within 5 h; stage A). Phase 2 and 3 experiments were designed to investigate the effects of various nitrite and erythorbate concentrations and followed a 10-h stage A and 15-h stage B bilinear cooling profile. Phase 2 examined the effects of nitrite concentrations of 0, 50, 75, 100, 150, and 200 mg/kg at a constant concentration of erythorbate (547 mg/kg). Results revealed changes in C. perfringens populations for each treatment of 6.75, 3.59, 2.43, −0.38, −0.48, and −0.50 log CFU/g, respectively. Phase 3 examined the effects of various nitrite and erythorbate concentrations at 100 mg/kg nitrite with 0 mg/kg erythorbate, 100 with 250, 100 with 375, 100 with 547, 150 with 250, and 200 with 250, respectively. The changes in C. perfringens populations for each treatment were 4.99, 2.87, 2.50, 1.47, 0.89, and −0.60 log CFU/g, respectively. Variability in C. perfringens growth for the 100 mg/kg nitrite with 547 mg/kg erythorbate treatment was observed between phases 2 and 3 and may have been due to variations in treatment pH and NaCl concentrations. This study revealed the importance of nitrite and erythorbate for preventing growth of C. perfringens during a much longer (25 h) cooling period than currently specified in the USDA-FSIS Appendix B.


2013 ◽  
Vol 76 (1) ◽  
pp. 65-71 ◽  
Author(s):  
VIJAY K. JUNEJA ◽  
DAVID A. BAKER ◽  
H. THIPPAREDDI ◽  
O. PETER SNYDER ◽  
TIM B. MOHR

The ability of Clostridium perfringens to germinate and grow in acidified ground beef as well as in 10 commercially prepared acidified beef, pork, and poultry products was assessed. The pH of ground beef was adjusted with organic vinegar to achieve various pH values between 5.0 and 5.6; the pH of the commercial products ranged from 4.74 to 6.35. Products were inoculated with a three-strain cocktail of C. perfringens spores to achieve ca. 2-log (low) or 4-log (high) inoculum levels, vacuum packaged, and cooled exponentially from 54.4 to 7.2°C for 6, 9, 12, 15, 18, or 21 h to simulate abusive cooling; the U.S. Department of Agriculture, Food Safety and Inspection Service (USDA-FSIS) recommends a cooling time of 6.5 h. Total germinated C. perfringens populations were determined after plating on tryptose-sulfite-cycloserine agar and incubating the plates anaerobically at 37°C for 48 h. In addition, C. perfringens growth from spores was assessed at an isothermal temperature of 44°C. Growth from spores was inhibited in ground beef with a pH of 5.5 or below, even during extended cooling from 54.4 to 7.2°C in 21 h. In ground beef with a pH of 5.6, the growth was >1 log after 18 h of cooling from 54.4 to 7.2°C. However, 15 h of cooling controlled the growth to <1 log, regardless of the inoculum level. In addition, no growth was observed in any product with a pH ranging from 4.74 to 5.17, both during exponential abusive cooling periods of up to 21 h and during storage for 21 h at 44°C. While <1-log growth of C. perfringens from spores was observed in the pH 5.63 product cooled exponentially from 54.4 to 7.2°C in 15 h or less, the pH 6.35 product supported growth, even after 6 h of cooling from 54.4 to 7.2°C. These challenge tests demonstrate that adjustment of ground beef to pH of 5.5 or less and of barbeque products to pH of 5.63 or less inhibits C. perfringens spore germination and outgrowth during extended cooling periods from 54.4 to 7.2°C up to 15 h. Therefore, safe cooling periods for products with homogeneous, lower pHs can be substantially longer.


2009 ◽  
Vol 72 (3) ◽  
pp. 564-571 ◽  
Author(s):  
ANNA C. S. PORTO-FETT ◽  
VIJAY K. JUNEJA ◽  
MARK L. TAMPLIN ◽  
JOHN B. LUCHANSKY

Irradiated ground beef samples (ca. 3-g portions with ca. 25% fat) inoculated with Yersina pestis strain KIM5 (ca. 6.7 log CFU/g) were heated in a circulating water bath stabilized at 48.9, 50, 52.5, 55, 57.5, or 60°C (120, 122, 126.5, 131, 135.5, and 140°F, respectively). Average D-values were 192.17, 34.38, 17.11, 3.87, 1.32, and 0.56 min, respectively, with a corresponding z-value of 4.67°C (8.41°F). In related experiments, irradiated ground beef patties (ca. 95 g per patty with ca. 25% fat) were inoculated with Y. pestis strains KIM5 or CDC-A1122 (ca. 6.0 log CFU/g) and cooked on an open-flame gas grill or on a clam-shell type electric grill to internal target temperatures of 48.9, 60, and 71.1°C (120, 140, and 160°F, respectively). For patties cooked on the gas grill, strain KIM5 populations decreased from ca. 6.24 to 4.32, 3.51, and ≤0.7 log CFU/g at 48.9, 60, and 71.1°C, respectively, and strain CDC-A1122 populations decreased to 3.46 log CFU/g at 48.9°C and to ≤0.7 log CFU/g at both 60 and 71.1°C. For patties cooked on the clam-shell grill, strain KIM5 populations decreased from ca. 5.96 to 2.53 log CFU/g at 48.9°C and to ≤0.7 log CFU/g at 60 or 71.1°C, and strain CDC-A1122 populations decreased from ca. 5.98 to ≤0.7 log CFU/g at all three cooking temperatures. These data confirm that cooking ground beef on an open-flame gas grill or on a clam-shell type electric grill to the temperatures and times recommended by the U.S. Department of Agriculture and the U.S. Food and Drug Administration Food Code, appreciably lessens the likelihood, severity, and/or magnitude of consumer illness if the ground beef were purposefully contaminated even with relatively high levels of Y. pestis.


Sign in / Sign up

Export Citation Format

Share Document