TFF Peptides

Author(s):  
Werner Hoffmann
Keyword(s):  
1997 ◽  
Vol 291 (1) ◽  
pp. 13-18 ◽  
Author(s):  
Wolfgang Jagla ◽  
Antje Wiede ◽  
Sabine K�lle ◽  
W. Hoffmann

2021 ◽  
Vol 22 (22) ◽  
pp. 12221
Author(s):  
Werner Hoffmann

Human saliva is a complex body fluid with more than 3000 different identified proteins. Besides rheological and lubricating properties, saliva supports wound healing and acts as an antimicrobial barrier. TFF peptides are secreted from the mucous acini of the major and minor salivary glands and are typical constituents of normal saliva; TFF3 being the predominant peptide compared with TFF1 and TFF2. Only TFF3 is easily detectable by Western blotting. It occurs in two forms, a disulfide-linked homodimer (Mr: 13k) and a high-molecular-mass heterodimer with IgG Fc binding protein (FCGBP). TFF peptides are secretory lectins known for their protective effects in mucous epithelia; the TFF3 dimer probably has wound-healing properties due to its weak motogenic effect. There are multiple indications that FCGBP and TFF3-FCGBP play a key role in the innate immune defense of mucous epithelia. In addition, homodimeric TFF3 interacts in vitro with the salivary agglutinin DMBT1gp340. Here, the protective roles of TFF peptides, FCGBP, and DMBT1gp340 in saliva are discussed. TFF peptides are also used to reduce radiotherapy- or chemotherapy-induced oral mucositis. Thus, TFF peptides, FCGBP, and DMBT1gp340 are promising candidates for better formulations of artificial saliva, particularly improving wound healing and antimicrobial effects even in the esophagus.


2020 ◽  
Vol 21 (12) ◽  
pp. 4535 ◽  
Author(s):  
Werner Hoffmann

Trefoil factor family peptides (TFF1, TFF2, TFF3) are typically co-secreted together with mucins. Tff1 represents a gastric tumor suppressor gene in mice. TFFs are also synthesized in minute amounts in the immune and central nervous systems. In mucous epithelia, they support rapid repair by enhancing cell migration (“restitution”) via their weak chemotactic and anti-apoptotic effects. For a long time, as a paradigm, this was considered as their major biological function. Within recent years, the formation of disulfide-linked heterodimers was documented for TFF1 and TFF3, e.g., with gastrokine-2 and IgG Fc binding protein (FCGBP). Furthermore, lectin activities were recognized as enabling binding to a lipopolysaccharide of Helicobacter pylori (TFF1, TFF3) or to a carbohydrate moiety of the mucin MUC6 (TFF2). Only recently, gastric TFF1 was demonstrated to occur predominantly in monomeric forms with an unusual free thiol group. Thus, a new picture emerged, pointing to diverse molecular functions for TFFs. Monomeric TFF1 might protect the gastric mucosa as a scavenger for extracellular reactive oxygen/nitrogen species. Whereas, the TFF2/MUC6 complex stabilizes the inner layer of the gastric mucus. In contrast, the TFF3–FCGBP heterodimer (and also TFF1–FCGBP) are likely part of the innate immune defense of mucous epithelia, preventing the infiltration of microorganisms.


2015 ◽  
Vol 6 (5-6) ◽  
pp. 343-359 ◽  
Author(s):  
Maike Busch ◽  
Nicole Dünker

AbstractTrefoil factor family (TFF) peptides are a group of molecules bearing a characteristic three-loop trefoil domain. They are mainly secreted in mucous epithelia together with mucins but are also synthesized in the nervous system. For many years, TFF peptides were only known for their wound healing and protective function, e.g. in epithelial protection and restitution. However, experimental evidence has emerged supporting a pivotal role of TFF peptides in oncogenic transformation, tumorigenesis and metastasis. Deregulated expression of TFF peptides at the gene and protein level is obviously implicated in numerous cancers, and opposing functions as oncogenes and tumor suppressors have been described. With regard to the regulation of TFF expression, epigenetic mechanisms as well as the involvement of various miRNAs are new, promising aspects in the field of cancer research. This review will summarize current knowledge about the expression and regulation of TFF peptides and the involvement of TFF peptides in tumor biology and cancerogenesis.


2001 ◽  
Vol 1539 (1-2) ◽  
pp. 71-84 ◽  
Author(s):  
Valérie Gouyer ◽  
Antje Wiede ◽  
Marie-Pierre Buisine ◽  
Sophie Dekeyser ◽  
Odile Moreau ◽  
...  
Keyword(s):  

1999 ◽  
Vol 62 (1) ◽  
pp. 173-178 ◽  
Author(s):  
Helmut Schwarzberg ◽  
Hubert Kalbacher ◽  
Werner Hoffmann

Sign in / Sign up

Export Citation Format

Share Document