Time Course of Food Intake and Plasma and Brain Amino Acid Concentrations in Rats Fed Amino Acid-Imbalanced or -Deficient Diets

Author(s):  
D.W. GIETZEN ◽  
P.M.B. LEUNG ◽  
T.W. CASTONGUAY ◽  
W.J. HARTMAN ◽  
Q.R. ROGERS
1985 ◽  
Vol 58 (6) ◽  
pp. 1751-1754 ◽  
Author(s):  
B. M. Hitzig ◽  
M. P. Kneussl ◽  
V. Shih ◽  
R. D. Brandstetter ◽  
H. Kazemi

To assess the role of brain amino acid neurotransmitters in the breath hold of diving animals, concentrations of free amino acids present in the brains of turtles immediately after 2 h of apneic diving (at 20 degrees C) were measured. Additionally, the same measurements were performed on four other groups of animals subjected to 2 h of hypercapnia (8% CO2 in air), anoxia (N2 breathing), anoxia plus hypercapnia (8% CO2–92% N2), or air breathing (control). Significant changes in the concentrations of the inhibitory amino acid neurotransmitters known to affect respiration [gamma-aminobutyric acid (GABA) and taurine] were seen. GABA increased significantly in those animals subjected to anoxia, whereas taurine decreased significantly in the diving animals and increased significantly in those subjected to anoxia plus hypercapnia. These results suggest that the attenuated central ventilatory drive during diving in these animals may be related to alterations in brain concentrations of GABA and taurine.


1983 ◽  
Vol 2 ◽  
pp. 36
Author(s):  
L.S. Eriksson ◽  
A. Delin ◽  
U. Tossman ◽  
U. Ungerstedt

1994 ◽  
Vol 266 (5) ◽  
pp. R1675-R1686 ◽  
Author(s):  
G. H. Anderson ◽  
E. T. Li ◽  
S. P. Anthony ◽  
L. T. Ng ◽  
R. Bialik

The relationship between plasma and brain amino acids and short-term food intake after administration of albumin, or its constituent amino acids, was examined. Rats given protein (0.85 g chicken egg albumin) or an amino acid mixture patterned after egg albumin reduced their food intake during 1 h of feeding beginning 30 min after gavage. Similarly, when given separately, the essential (EAA) and nonessential amino acid (NEAA) fractions of egg albumin caused comparable decreases in food intake. As the dose increased from 0.5 to 1.5 g the duration of anorexia prolonged to 12 h. Little change occurred in plasma amino acids at 30 and 60 min after albumin at 0.85 g, although many increased by 25-50% at 60 min after 1.5 g. Marked changes in plasma occurred after gavage with the total mixture of constituent free amino acids and after either EAA or NEAA fractions. Brain amino acid concentrations were little affected by albumin and did not show consistent changes after the amino acid treatments. Thus the reductions in food intake after ingestion of albumin or of its constituent amino acids were not predicted from the resulting changes in either plasma or brain concentrations of amino acids.


1990 ◽  
Vol 31 (3) ◽  
pp. 187-192 ◽  
Author(s):  
Joanne M. Miller ◽  
Richard S. Jope ◽  
Thomas N. Ferraro ◽  
Theodore A. Hare

1985 ◽  
Vol 63 (5) ◽  
pp. 487-494 ◽  
Author(s):  
N. Theresa Glanville ◽  
G. Harvey Anderson

The effect of diabetes (streptozotocin, 65 mg/kg ip), dietary protein intake (15–60%), and plasma amino acid concentrations on brain large neutral amino acid levels in rats was examined. After 20 days, the plasma concentrations of methionine and the branched chain amino acids (BCAA), valine, isoleucine, and leucine were increased in diabetic rats. In brain tissue, methionine and valine levels were increased but threonine, tyrosine, and tryptophan concentrations were depressed. Increased protein consumption promoted a diabetic-like plasma amino acid pattern in normal rats while enhancing that of diabetic animals. However, with the exception of threonine, glycine, valine, and tyrosine, there was little effect on brain amino acid levels. A good association was found between the calculated brain influx rate and the actual brain concentration of threonine, methionine, tyrosine, and tryptophan in diabetic animals. There was no correlation, however, between brain influx rate and brain BCAA levels. Thus, the brain amino acid pattern in diabetes represents the combined effects of insulin insufficiency and composition of the diet ingested on plasma amino acid levels as well as metabolic adaptation within the brain itself.


Sign in / Sign up

Export Citation Format

Share Document