Dissociation between plasma and brain amino acid profiles and short-term food intake in the rat

1994 ◽  
Vol 266 (5) ◽  
pp. R1675-R1686 ◽  
Author(s):  
G. H. Anderson ◽  
E. T. Li ◽  
S. P. Anthony ◽  
L. T. Ng ◽  
R. Bialik

The relationship between plasma and brain amino acids and short-term food intake after administration of albumin, or its constituent amino acids, was examined. Rats given protein (0.85 g chicken egg albumin) or an amino acid mixture patterned after egg albumin reduced their food intake during 1 h of feeding beginning 30 min after gavage. Similarly, when given separately, the essential (EAA) and nonessential amino acid (NEAA) fractions of egg albumin caused comparable decreases in food intake. As the dose increased from 0.5 to 1.5 g the duration of anorexia prolonged to 12 h. Little change occurred in plasma amino acids at 30 and 60 min after albumin at 0.85 g, although many increased by 25-50% at 60 min after 1.5 g. Marked changes in plasma occurred after gavage with the total mixture of constituent free amino acids and after either EAA or NEAA fractions. Brain amino acid concentrations were little affected by albumin and did not show consistent changes after the amino acid treatments. Thus the reductions in food intake after ingestion of albumin or of its constituent amino acids were not predicted from the resulting changes in either plasma or brain concentrations of amino acids.

1963 ◽  
Vol 204 (4) ◽  
pp. 686-690 ◽  
Author(s):  
Juan C. Sanahuja ◽  
Alfred E. Harper

Effects of a dietary imbalance of amino acids on the plasma amino acid pattern of the protein-depleted rat are described. The amino acid imbalance was created by adding a mixture of indispensable amino acids lacking histidine to a diet in which the protein was provided by 6% of beef blood fibrin. The addition of this amino acid mixture was previously shown to cause depressions in growth and food intake. In the present study the depression in food intake was preceded by a fall in plasma histidine concentration and at the same time the concentrations of some of the other indispensable amino acids, especially threonine, began to rise. The ratios of several indispensable amino acids to histidine in the plasma were elevated when food intake was most severely depressed.


2015 ◽  
Vol 114 (11) ◽  
pp. 1845-1851 ◽  
Author(s):  
Yean Yean Soong ◽  
Joseph Lim ◽  
Lijuan Sun ◽  
Christiani Jeyakumar Henry

AbstractConsumption of high glycaemic index (GI) and glycaemic response (GR) food such as white rice has been implicated in the development of type 2 diabetes. Previous studies have reported the ability of individual amino acids to reduce GR of carbohydrate-rich foods. Because of the bitter flavour of amino acids, they have rarely been used to reduce GR. We now report the use of a palatable, preformed amino acid mixture in the form of essence of chicken. In all, sixteen healthy male Chinese were served 68 or 136 ml amino acid mixture together with rice, or 15 or 30 min before consumption of white rice. Postprandial blood glucose and plasma insulin concentrations were measured at fasting and every 15 min after consumption of the meal until 60 min after the consumption of the white rice. Subsequent blood samples were taken at 30-min intervals until 210 min. The co-ingestion of 68 ml of amino acid mixture with white rice produced the best results in reducing the peak blood glucose and GR of white rice without increasing the insulinaemic response. It is postulated that amino acid mixtures prime β-cell insulin secretion and peripheral tissue uptake of glucose. The use of ready-to-drink amino acid mixtures may be a useful strategy for lowering the high-GI rice diets consumed in Asia.


1973 ◽  
Vol 25 (3) ◽  
pp. 354-359 ◽  
Author(s):  
P. C. Simson ◽  
D. A. Booth

An histidine-devoid but otherwise balanced amino acid mixture depressed food intake from 2 hr after its gastric intubation. It induced conditioned aversion to an odour incorporated in a protein-free diet presented for 6 h following intubation. In other rats, a balanced amino acid mixture established conditioned preference for odour presented in the same diet for 6 h following intubation. The degree of preference was considerably less than the degree of aversion.


1980 ◽  
Vol 239 (6) ◽  
pp. G493-G496 ◽  
Author(s):  
E. J. Feldman ◽  
M. I. Grossman

Using intragastric titration in dogs with gastric fistulas, dose-response studies were carried out with liver extract and with a mixture of amino acids that matched the free amino acids found in liver extract. All solutions were adjusted to pH 7.0 and osmolality to 290 mosmol x kg-1. Doses are expressed as the sum of the concentrations of all free amino acids. At each dose studied (free amino acid concentration: 2.8, 5.6, 11, 23, and 45 mM), acid secretion in response to the free amino acid mixture was not significantly different from that of liver extract. The peak response to both liver extract and the free amino acid mixture occurred with the 23-mM dose and represented about 60% of the maximal response to histamine. The serum concentrations of gastrin after liver extract and the amino acid mixture were not significantly different. It is concluded that in dogs with gastric fistula, gastric acid secretion and release of gastrin were not significantly different in response to liver extract and to a mixture of amino acids that simulated the free amino acid content of liver extract.


1997 ◽  
Vol 273 (1) ◽  
pp. E122-E129 ◽  
Author(s):  
G. Biolo ◽  
K. D. Tipton ◽  
S. Klein ◽  
R. R. Wolfe

Six normal untrained men were studied during the intravenous infusion of a balanced amino acid mixture (approximately 0.15 g.kg-1.h-1 for 3 h) at rest and after a leg resistance exercise routine to test the influence of exercise on the regulation of muscle protein kinetics by hyperaminoacidemia. Leg muscle protein kinetics and transport of selected amino acids (alanine, phenylalanine, leucine, and lysine) were isotopically determined using a model based on arteriovenous blood samples and muscle biopsy. The intravenous amino acid infusion resulted in comparable increases in arterial amino acid concentrations at rest and after exercise, whereas leg blood flow was 64 +/- 5% greater after exercise than at rest. During hyperaminoacidemia, the increases in amino acid transport above basal were 30-100% greater after exercise than at rest. Increases in muscle protein synthesis were also greater after exercise than at rest (291 +/- 42% vs. 141 +/- 45%). Muscle protein breakdown was not significantly affected by hyperminoacidemia either at rest or after exercise. We conclude that the stimulatory effect of exogenous amino acids on muscle protein synthesis is enhanced by prior exercise, perhaps in part because of enhanced blood flow. Our results imply that protein intake immediately after exercise may be more anabolic than when ingested at some later time.


PEDIATRICS ◽  
1988 ◽  
Vol 82 (4) ◽  
pp. 680-680
Author(s):  
NIELS C. R. RÄIHÄ

To the Editor.— In a recent paper in Pediatrics, Heird et al1 reported their evaluation of the use of a new amino acid mixture for parenteral nutrition in low birth weight infants. On the basis of their results the authors made the following statement: "These observations refute the concept that the metabolic capacity of LBW infants for amino acids is limited in comparison to that of term infants, older infants, and chi1dren."1(p49) Such a conclusion is not justified on the basis of the presented data.


1982 ◽  
Vol 242 (1) ◽  
pp. E53-E58
Author(s):  
J. G. Yovos ◽  
T. M. O'Dorisio ◽  
T. N. Pappas ◽  
S. Cataland ◽  
F. B. Thomas ◽  
...  

Insulin release following intravenous administration of an amino acid solution with and without a simultaneous infusion of varying amounts of porcine gastric inhibitory polypeptide (GIP) was studied in dogs. Group I received a 10-amino acid mixture (300 mosmol/kg iv) at 16.6 ml/min for 1 h; group II, amino acid mixture plus 0.5 micrograms.kg-1.h-1 porcine GIP; group III, amino acid mixture plus 1.0 micrograms.kg-1.h-1 of GIP; group IV (a and b) received either 0.5 or 1.0 micrograms.kg-1.h-1 of GIP alone. Compared to group I, groups II and III had a greater insulin response during the first 30 min of the infusion. Group] IV (a and b) showed no insulin release. Glucose concentrations showed no significant change in all groups. From these results, it is concluded that insulin release after intravenous infusion of an amino acid mixture plus GIP is greater than after amino acids or GIP alone. It appears that this effect is more pronounced in the early phase of insulin release.


1962 ◽  
Vol 202 (3) ◽  
pp. 407-414 ◽  
Author(s):  
Rapier H. McMenamy ◽  
William C. Shoemaker ◽  
Jonas E. Richmond ◽  
David Elwyn

Dog livers were perfused in situ for periods up to 6 hr with dog blood recycled through a pump-oxygenator. An amino acid mixture was administered for 90 min. Concentrations of amino acids were determined at intervals of 30 min or more. Rates of uptake and metabolism were calculated. After the start of perfusion, there is a fall in most plasma amino acid concentrations and a reciprocal rise in liver amino acids. Addition of amino acids causes a sharp rise in plasma amino acids. There is a rapid uptake of most of the amino acids by liver, although the concentrations of amino acids in liver fail to rise appreciably. Notable exceptions are valine, leucine, and isoleucine. Uptake of amino acids stimulates: a) an increase in the rate of synthesis of urea which ultimately accounts for 90% of the metabolized amino acids; b) a net synthesis of ornithine; and c) net noncatabolic metabolism of amino acids which may in part be protein synthesis. The results support the view that the liver temporarily stores a part of ingested amino acids as proteins, and subsequently makes them available to other organs.


1971 ◽  
Vol 54 (1) ◽  
pp. 61-65
Author(s):  
Arthur Russell Johnson ◽  
Richard L Corliss ◽  
Enrique Fernandez-Flores

Abstract Qualitative chromatographic methods for the separation of free amino acids in table sirups are presented to aid in the development of chemical indices of composition which may be useful in establishing the identity of sirups and detecting their adulteration. Free amino acids in 2 table sirups were isolated on ion exchange columns and eluted with dilute ammonia. The concentrated amino acid mixture in the eluate was spotted directly on silica gel G plates for TLC analysis, or the amino acids were converted to their N-trifluoroacetyl n-butyl esters for GLC analysis. As many as 16 amino acids were qualitatively separated and identified and a potential for quantitative analysis was demonstrated.


Sign in / Sign up

Export Citation Format

Share Document