ESTUARINE TOTAL SYSTEM METABOLISM AND ORGANIC EXCHANGE CALCULATED FROM NUTRIENT RATIOS: AN EXAMPLE FROM NARRAGANSETT BAY

1984 ◽  
pp. 261-290 ◽  
Author(s):  
Scott W. Nixon ◽  
Michael E.Q. Pilson
1995 ◽  
Vol 189 (2) ◽  
pp. 252-254 ◽  
Author(s):  
B. R. Balsis ◽  
D. W. M. Alderman ◽  
I. D. Buffam ◽  
R. H. Garritt ◽  
C. S. Hopkinson ◽  
...  

1994 ◽  
Vol 144 ◽  
pp. 1-9
Author(s):  
A. H. Gabriel

The development of the physics of the solar atmosphere during the last 50 years has been greatly influenced by the increasing capability of observations made from space. Access to images and spectra of the hotter plasma in the UV, XUV and X-ray regions provided a major advance over the few coronal forbidden lines seen in the visible and enabled the cooler chromospheric and photospheric plasma to be seen in its proper perspective, as part of a total system. In this way space observations have stimulated new and important advances, not only in space but also in ground-based observations and theoretical modelling, so that today we find a well-balanced harmony between the three techniques.


Author(s):  
T. Oikawa ◽  
N. Mori ◽  
T. Katoh ◽  
Y. Harada ◽  
J. Miyahara ◽  
...  

The “Imaging Plate”(IP) is a highly sensitive image recording plate for X-ray radiography. It has been ascertained that the IP has superior properties and high practicability as an image recording material in a TEM. The sensitivity, one of the properties, is about 3 orders higher than that of conventional photo film. The IP is expected to be applied to low dose techniques. In this paper, an estimation of the quantum noise on the TEM image which appears in case of low electron dose on the IP is reported.In this experiment, the JEM-2000FX TEM and an IP having the same size as photo film were used.Figure 1 shows the schematic diagram of the total system including the TEM used in this experiment. In the reader, He-Ne laser light is scanned across the IP, then blue light is emitted from the IP.


Author(s):  
Dennis Sherwood ◽  
Paul Dalby

Building on the previous chapter, this chapter examines gas phase chemical equilibrium, and the equilibrium constant. This chapter takes a rigorous, yet very clear, ‘first principles’ approach, expressing the total Gibbs free energy of a reaction mixture at any time as the sum of the instantaneous Gibbs free energies of each component, as expressed in terms of the extent-of-reaction. The equilibrium reaction mixture is then defined as the point at which the total system Gibbs free energy is a minimum, from which concepts such as the equilibrium constant emerge. The chapter also explores the temperature dependence of equilibrium, this being one example of Le Chatelier’s principle. Finally, the chapter links thermodynamics to chemical kinetics by showing how the equilibrium constant is the ratio of the forward and backward rate constants. We also introduce the Arrhenius equation, closing with a discussion of the overall effect of temperature on chemical equilibrium.


Author(s):  
Chloe Alexandre ◽  
Alban Latremoliere ◽  
Patrick H. Finan

With the advent of modern lifestyles, there has been a significant extension of daily activities, mostly at the cost of sleep. Lack of sleep affects many biological systems, including various cognitive functions, the immune system, metabolism, and pain. Both sleep and pain are complex neurological processes that encompass many dynamic components. As a result, defining the precise interactions between these two systems represents a challenge, especially for chronic paradigms. This chapter describes how sleep is measured and how it can be experimentally altered in humans and animal models, and, in turn, how sleep disturbances, either acute or chronic, can affect different aspects of pain. Possible mechanisms involved are discussed, including an increase in inflammatory processes, a loss of nociceptive inhibitory pathways, and a defect in the cognitive processing of noxious inputs.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Yoshinori Matsuo

Abstract Recently it was proposed that the entanglement entropy of the Hawking radiation contains the information of a region including the interior of the event horizon, which is called “island.” In studies of the entanglement entropy of the Hawking radiation, the total system in the black hole geometry is separated into the Hawking radiation and black hole. In this paper, we study the entanglement entropy of the black hole in the asymptotically flat Schwarzschild spacetime. Consistency with the island rule for the Hawking radiation implies that the information of the black hole is located in a different region than the island. We found an instability of the island in the calculation of the entanglement entropy of the region outside a surface near the horizon. This implies that the region contains all the information of the total system and the information of the black hole is localized on the surface. Thus the surface would be interpreted as the stretched horizon. This structure also resembles black holes in the AdS spacetime with an auxiliary flat spacetime, where the information of the black hole is localized at the interface between the AdS spacetime and the flat spacetime.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 323
Author(s):  
Guilherme Pontes Luz ◽  
Rodrigo Amaro e Silva

The recently approved regulation on Energy Communities in Europe is paving the way for new collective forms of energy consumption and production, mainly based on photovoltaics. However, energy modeling approaches that can adequately evaluate the impact of these new regulations on energy community configurations are still lacking, particularly with regards to the grid tariffs imposed on collective systems. Thus, the present work models three different energy community configurations sustained on collective photovoltaics self-consumption for a small city in southern Portugal. This energy community, which integrates the city consumers and a local winery, was modeled using the Python-based Calliope framework. Using real electricity demand data from power transformers and an actual winery, the techno-economic feasibility of each configuration was assessed. Results show that all collective arrangements can promote a higher penetration of photovoltaic capacity (up to 23%) and a modest reduction in the overall cost of electricity (up to 8%). However, there are clear trade-offs between the different pathways: more centralized configurations have 53% lower installation costs but are more sensitive to grid use costs (which can represent up to 74% of the total system costs). Moreover, key actor’s individual self-consumption rate may decrease by 10% in order to benefit the energy community as a whole.


Sign in / Sign up

Export Citation Format

Share Document