Impedance eduction for acoustic liners

Author(s):  
Xiaofeng Sun ◽  
Xiaoyu Wang
Keyword(s):  
2021 ◽  
pp. 1475472X2110238
Author(s):  
Michael G Jones ◽  
Douglas M Nark ◽  
Brian M Howerton

This paper presents results for five uniform and two multizone liners based on data acquired in the NASA Langley Grazing Flow Impedance Tube. Two methods, Prony and CHE, are used to educe the impedance spectra for each of these liners for many test conditions. The Prony method is efficient and generally provides accurate results for uniform liners, but is not well suited for multizone liners. The CHE method supports assessment of both uniform and multizone liners, but is much more computationally expensive. The results from these liners demonstrate the efficacy of both eduction methods, but also clearly demonstrate that sufficient attenuation is required to support accurate impedance eduction. For the liners considered in this study, the data indicate approximately 3 dB attenuation is needed for each zone of a multizone liner in order to ensure quality impedance eduction results. This study was conducted in response to two acoustic liner research challenges in support of a collaboration of multiple national laboratories under the International Forum for Aviation Research.


2021 ◽  
Vol 263 (6) ◽  
pp. 152-163
Author(s):  
Remi Roncen ◽  
Pierre Vuillemin ◽  
Patricia Klotz ◽  
Frank Simon ◽  
Fabien Méry ◽  
...  

In the context of noise reduction in diverse applications where a shear grazing flow is present (i.e., engine nacelle, jet pump, landing gear), improved acoustic liner solutions are being sought. This is particularly true in the low-frequency regime, where space constraints currently limit the efficiency of classic liner technology. To perform the required multi-objective optimization of complex meta-surface liner candidates, a software platform called OPAL was developed. Its first goal is to allow the user to assemble a large panel of parallel/serial assembly of unit acoustic elements, including the recent concept of LEONAR materials. Then, the physical properties of this liner can be optimized, relatively to given weighted objectives (noise reduction, total size of the sample, weight), for a given configuration. Alternatively, properties such as the different impedances of liner unit surfaces can be optimized. To accelerate the process, different nested levels of optimization are considered, from 0D analytical coarse designs in order to reduce the parameter space, up to 2D plan or axisymmetric high-order Discontinuous Galerkin resolution of the Linearized Euler Equations. The presentation will focus on the different aspects of liner design considered in OPAL, and present an application on different samples made for a small scale aeroacoustic bench.


2021 ◽  
Vol 69 (1) ◽  
pp. 1-17
Author(s):  
Frank Simon ◽  
Delphine Sebbane ◽  
surname given-names

Passive acoustic liners, used in aeronautic engine nacelles to reduce radiated fan noise, have a quarter-wavelength behavior. The simplest systems are SDOF-type (single degree of freedom), consisting of a perforated sheet backed with a honeycomb, whose absorption ability is limited to frequencies near the Helmholtz frequency. Thus, to widen the absorption frequency range, manufacturers use a 2DOF (double degree of freedom) system, with an internal layer over another honeycomb (stack of two resonators). However, one constraint is the limited thickness of the overall system, which reduces the space allotted to each honeycomb. A possible approach, based on a previous concept called LEONAR (long elastic open-neck acoustic resonator), could be to link each perforated layer to hollow tubes inserted in each honeycomb layer, in order to shift resonance frequencies to lower frequencies by extending the air column lengths. The presence of an empty chamber on both sides of the internal perforated layer also allows the tube length to be increased through tubes crossing both cavities, preserving the liner thickness. The main aim of this article is to mathematically describe the principle of a 2DOF LEONAR and to show the relevance of the mathematical model through FEM simulations and experiments performed in an impedance tube. Moreover, its behavior is analyzed through a parametric study, in order to explore its potential for an aeronautic application. A remarkable feature of 2DOF LEONAR-type materials with insertion of bottom tubes in the higher cavity is the possibility of maintaining the low frequency band provided by the original LEONAR concept, while adding a second absorption peak at a higher frequency, by the second layer and the accompanying tubes. There is a fundamental difference from classical SDOF/2DOF resonators, for which the thicknesses are obviously different.


2018 ◽  
Vol 8 (10) ◽  
pp. 1923
Author(s):  
Martin Dannemann ◽  
Michael Kucher ◽  
Eckart Kunze ◽  
Niels Modler ◽  
Karsten Knobloch ◽  
...  

In aero engines, noise absorption is realised by acoustic liners, e.g., Helmholtz resonator (HR) liners, which often absorb sound only in a narrow frequency range. Due to developments of new engine generations, an improvement of overall acoustic damping performance and in particular more broadband noise absorption is required. In this paper, a new approach to increase the bandwidth of noise absorption for HR liners is presented. By replacing rigid cell walls in the liner’s honeycomb core structure by flexible polymer films, additional acoustic energy is dissipated. A manufacturing technology for square honeycomb cores with partially flexible walls is described. Samples with different flexible wall materials were fabricated and tested. The acoustic measurements show more broadband sound absorption compared to a reference liner with rigid walls due to acoustic-structural interaction. Manufacturing-related parameters are found to have a strong influence on the resulting vibration behaviour of the polymer films, and therefore on the acoustic performance. For future use, detailed investigations to ensure the liner segments compliance with technical, environmental, and life-cycle requirements are needed. However, the results of this study show the potential of this novel liner concept for noise reduction in future aero-engines.


Author(s):  
Manuel Zenz ◽  
Loris Simonassi ◽  
Philipp Bruckner ◽  
Simon Pramstrahler ◽  
Franz Heitmeir ◽  
...  

Abstract To further reduce the noise emitted from modern aircrafts, every possibility has to be taken into account. Acoustic liners are successfully used in the inlet or the bypass duct of aircraft engines to mitigate the noise emitted by the fan. Due to the rough environment (high temperature, flow velocity, higher order duct modes), the exhaust duct is of limited use concerning the application of acoustic liners. It is well known that the last stage low pressure turbine (LPT) has a dominant influence onto the emitted noise of an aircraft engine especially at low load conditions such as approach. A noise reduction in this area could lead to a beneficial result of decreasing the noise content which is directly emitted in the environment. This paper is about noise attenuation using Helmholtz absorbers in various parts of a turbine exit casing (TEC). These single degree of freedom absorbers have been integrated in turbine exit guide vanes (TEGVs), with the openings on the vanes suction side, as well as in the inner and outer duct end walls. Different absorber neck diameters were investigated and combined with different vane designs. The vane designs studied included a state of the art set-up as well as vanes with a lean. Test runs were performed with altered combinations of vanes and end walls under engine relevant operating conditions in a subsonic test turbine facility for aerodynamic, aeroacoustic and aeroelastic investigations (STTF-AAAI) located at the Institute of Thermal Turbomachinery and Machine Dynamics at Graz University of Technology. Comparisons between all these setups and the respective hard wall reference cases were done. The resulting sound pressure levels as well as sound power levels of all investigated combinations are listed and compared concerning each configurations noise attenuation potential. Additionally, the flow field downstream of every setup is analysed if the aerodynamic behaviour is changing. The investigated operating point is the noise certification point Approach (APP) which is of high importance because of the high acoustical impact onto the environment around airports during the landing procedure of an aircraft. The acoustical data has been obtained by using flush mounted condenser microphones located downstream of the TEC. The whole test section was rotated over 360 deg around the flow channel. To detect if the aerodynamical behaviour changes by including openings into the flow channel end walls as well as into the vanes, aerodynamic measurements have been performed downstream of the TEC. The aerodynamical data was obtained by using an aerodynamic five-hole-probe (5HP) as well as a trailing edge probe.


Akustika ◽  
2021 ◽  
pp. 80
Author(s):  
Vadim Palchikovskiy ◽  
Igor Khramtsov ◽  
Aleksander Kuznetsov ◽  
Victor Pavlogradskiy

The article considers the general issues arising in designing the experimental setup “Impedance tube with grazing flow”, the main structural units of the setup, and their purpose. It is given the basic requirements to be provided by the setup when testing samples of acoustic liners used in an aircraft engine. The choosing of the design parameters of the setup is based on the analysis of the known analytical solutions of the acoustics and gas dynamics, and on the numerical simulation of the grazing flow in the impedance tube.


Sign in / Sign up

Export Citation Format

Share Document