Noise Attenuation Potential Using Helmholtz Absorbers Integrated in Low Pressure Turbine Exit Guide Vanes and Turbine Exit Casing End Walls

Author(s):  
Manuel Zenz ◽  
Loris Simonassi ◽  
Philipp Bruckner ◽  
Simon Pramstrahler ◽  
Franz Heitmeir ◽  
...  

Abstract To further reduce the noise emitted from modern aircrafts, every possibility has to be taken into account. Acoustic liners are successfully used in the inlet or the bypass duct of aircraft engines to mitigate the noise emitted by the fan. Due to the rough environment (high temperature, flow velocity, higher order duct modes), the exhaust duct is of limited use concerning the application of acoustic liners. It is well known that the last stage low pressure turbine (LPT) has a dominant influence onto the emitted noise of an aircraft engine especially at low load conditions such as approach. A noise reduction in this area could lead to a beneficial result of decreasing the noise content which is directly emitted in the environment. This paper is about noise attenuation using Helmholtz absorbers in various parts of a turbine exit casing (TEC). These single degree of freedom absorbers have been integrated in turbine exit guide vanes (TEGVs), with the openings on the vanes suction side, as well as in the inner and outer duct end walls. Different absorber neck diameters were investigated and combined with different vane designs. The vane designs studied included a state of the art set-up as well as vanes with a lean. Test runs were performed with altered combinations of vanes and end walls under engine relevant operating conditions in a subsonic test turbine facility for aerodynamic, aeroacoustic and aeroelastic investigations (STTF-AAAI) located at the Institute of Thermal Turbomachinery and Machine Dynamics at Graz University of Technology. Comparisons between all these setups and the respective hard wall reference cases were done. The resulting sound pressure levels as well as sound power levels of all investigated combinations are listed and compared concerning each configurations noise attenuation potential. Additionally, the flow field downstream of every setup is analysed if the aerodynamic behaviour is changing. The investigated operating point is the noise certification point Approach (APP) which is of high importance because of the high acoustical impact onto the environment around airports during the landing procedure of an aircraft. The acoustical data has been obtained by using flush mounted condenser microphones located downstream of the TEC. The whole test section was rotated over 360 deg around the flow channel. To detect if the aerodynamical behaviour changes by including openings into the flow channel end walls as well as into the vanes, aerodynamic measurements have been performed downstream of the TEC. The aerodynamical data was obtained by using an aerodynamic five-hole-probe (5HP) as well as a trailing edge probe.

2008 ◽  
Vol 130 (11) ◽  
Author(s):  
Andreas Gross ◽  
Hermann F. Fasel

Laminar separation on the suction side of low-pressure turbine blades at low Reynolds number operating conditions deteriorates overall engine performance and has to be avoided. This requirement affects the blade design and poses a limitation on the maximum permissible blade spacing. Better understanding of the flow physics associated with laminar separation will aid in the development of flow control techniques for delaying or preventing flow separation. Simulations of low-pressure turbine flows are challenging as both unsteady separation and transition are present and interacting. Available simulation strategies have to be evaluated before a well-founded decision for the choice of a particular simulation strategy can be made. With this in mind, this paper provides a comparison of different flow simulation strategies: In particular, “coarse grid” direct numerical simulations, implicit large-eddy simulations, and simulations based on a hybrid turbulence modeling approach are evaluated with particular emphasis on investigating the dynamics of the coherent structures that are generated in the separated flow region and that appear to dominate the entire flow. It is shown that in some instances, the effect of the dominant coherent structures can also be predicted by unsteady Reynolds-averaged Navier–Stokes calculations.


Author(s):  
F. Schönleitner ◽  
T. Selic ◽  
C. Schitter ◽  
F. Heitmeir ◽  
A. Marn

Exit guide vanes of turbine exit casings are designed to meet aerodynamic, structural and acoustic criteria. New low pressure turbine architectures of aero engines try to optimize components weight in order to decrease the fuel consumption and reduce noise emissions. For this purpose different designs of turbine exit guide vanes (TEGV) exist which vary geometry as well as the number of vanes in the casing. In the subsonic test turbine facility at the Institute for Thermal Turbomachinery and Machine Dynamics of Graz University of Technology, which represents a 1 ½ low pressure turbine stage, the upstream effect of these innovative turbine exit casings (TEC) designs is under investigation. Up to now the influence of the turbine exit casing in relation to the aerodynamic vibration excitation of the rotor blading is not well known. For rotor blade vibration measurements a telemetry system in combination with strain gauges is applied. The present paper is a report of blade vibration measurements within a rotating system in the area of low pressure turbines under engine relevant operating conditions. Within the test phase different turbine exit casings are under investigation at two different operating points (OP). These turbine exit casings represent different design goals, e.g. aerodynamically optimization was performed to reduce losses at the aero design point or an acoustically optimization was done to reduce noise emission at the operating point approach. All these different design intents lead to a changed upstream effect, thus changing rotor blade vibrations. To identify parameters affecting blade vibration attention is paid to aerodynamic measurements as well. Selected results of steady and unsteady flow field measurements are analyzed to draw conclusions. The upstream effect of different turbine exit casings can be quantified at OP1. Depending on the vane number both the potential effect of the TEGV increase and the upstream effect as well. Aerodynamic as well as acoustic improvements as wanted with H-TEC and inverse-cut-off TEC lead to unfavorable conditions and higher blade loading in comparison to the referenced TEC. OP2 provides additional information of downstream effects. Due to the stator vane number the rotor blading is excited in its 4th eigenfrequency. The comparison between all investigated turbine exit casings with respect to the referenced configuration provides a basis for numerical code validation and future developments.


Author(s):  
M. Zenz ◽  
A. Hafizovic ◽  
L. Simonassi ◽  
P. Leitl ◽  
F. Heitmeir ◽  
...  

Abstract One of the main goals for modern aircrafts is to lower the fuel consumption and noise emissions without worsening the aerodynamic performance. One possibility to lower the fuel consumption is to reduce the skin-friction losses of vanes and blades inside the engine. Therefore, this paper is about the aeroacoustical as well as the aerodynamical effects of a riblet foil applied on the suction side surface of turbine exit guide vanes (TEGVs) of a 1½ stage low pressure turbine (LPT). There have been numerous studies concerning riblets but none using them in a LPT. In general, if riblets are applied on the suction side of vanes or blades, they lower the drag and increase the lift. Test runs were performed under two different operating points in a subsonic test turbine facility for aerodynamic, aeroacoustic, and aeroelastic investigations (STTF-AAAI) located at the Institute for Thermal Turbomachinery and Machine Dynamics at Graz University of Technology. One operating point was the design point of the riblets and the second one an off-design point. During the test campaign, two different set-ups have been investigated. One configuration with riblets applied on the suction side of the TEGVs, and one configuration with a smooth foil on the vanes to achieve the same thickness as the first set-up. This smooth configuration serves as a reference case. The tested riblet structure was of trapezoid type with 45 μm tip distance and a height to tip distance ratio of 0.45. The acoustical data has been obtained by using flush mounted condenser microphones, rotated over 360 deg around the flow channel. The aerodynamical data was obtained by using an aerodynamic five-hole-probe as well as a trailing edge probe. Measuring in planes up- and downstream of each TEGV allowed the comparison of a rough pressure loss estimation between the two studied set-ups. The present work gives a closer insight into the change of the acoustical and aerodynamical behaviour by applying riblets to LPT vanes.


Author(s):  
Marion Mack ◽  
Roland Brachmanski ◽  
Reinhard Niehuis

The performance of the low pressure turbine (LPT) can vary appreciably, because this component operates under a wide range of Reynolds numbers. At higher Reynolds numbers, mid and aft loaded profiles have the advantage that transition of suction side boundary layer happens further downstream than at front loaded profiles, resulting in lower profile loss. At lower Reynolds numbers, aft loading of the blade can mean that if a suction side separation exists, it may remain open up to the trailing edge. This is especially the case when blade lift is increased via increased pitch to chord ratio. There is a trend in research towards exploring the effect of coupling boundary layer control with highly loaded turbine blades, in order to maximize performance over the full relevant Reynolds number range. In an earlier work, pulsed blowing with fluidic oscillators was shown to be effective in reducing the extent of the separated flow region and to significantly decrease the profile losses caused by separation over a wide range of Reynolds numbers. These experiments were carried out in the High-Speed Cascade Wind Tunnel of the German Federal Armed Forces University Munich, Germany, which allows to capture the effects of pulsed blowing at engine relevant conditions. The assumed control mechanism was the triggering of boundary layer transition by excitation of the Tollmien-Schlichting waves. The current work aims to gain further insight into the effects of pulsed blowing. It investigates the effect of a highly efficient configuration of pulsed blowing at a frequency of 9.5 kHz on the boundary layer at a Reynolds number of 70000 and exit Mach number of 0.6. The boundary layer profiles were measured at five positions between peak Mach number and the trailing edge with hot wire anemometry and pneumatic probes. Experiments were conducted with and without actuation under steady as well as periodically unsteady inflow conditions. The results show the development of the boundary layer and its interaction with incoming wakes. It is shown that pulsed blowing accelerates transition over the separation bubble and drastically reduces the boundary layer thickness.


Author(s):  
Edmund Kügeler ◽  
Georg Geiser ◽  
Jens Wellner ◽  
Anton Weber ◽  
Anselm Moors

This is the third part of a series of three papers on the simulation of turbulence and transition effects in a multistage low pressure turbine. The third part of the series deals with the detailed comparison of the Harmonic Balance calculations with the full wheel simulations and measurements for the two-stage low-pressure turbine. The Harmonic Balance simulations were carried out in two confingurations, either using only the 0th harmonic in the turbulence and transition model or additional in all harmonics. The same Menter SST two-equation k–ω turbulence model along with Menter and Langtrys two-equation γ–Reθ transition model is used in the Harmonic Balance simulation as in the full wheel simulations. The measurements on the second stator ofthe low-pressure turbine have been carried out separately for downstream and upstream influences. Thus, a dedicated comparison of the downstream and upstream influences of the flow to the second stator is possible. In the Harmonic Balance calculations, the influences of the not directly adjacent blade, i.e. the first stator, were also included in the second stator In the first analysis, however, it was shown that the consistency with the full wheel configuration and the measurement in this case was not as good as expected. From the analysis ofthe full wheel simulation, we found that there is a considerable variation in the order ofmagnitude ofthe unsteady values in the second stator. In a further deeper consideration of the configuration, it is found that modes are reflected in upstream rows and influences the flow in the second stator. After the integration of these modes into the Harmonic Balance calculations, a much better agreement was reached with results ofthe full wheel simulation and the measurements. The second stator has a laminar region on the suction side starting at the leading edge and then transition takes place via a separation or in bypass mode, depending on the particular blade viewed in the circumferential direction. In the area oftransition, the clear difference between the calculations without and with consideration ofthe higher harmonics in the turbulence and transition models can be clearly seen. The consideration ofthe higher harmonics in the turbulence and transition models results an improvement in the consistency.


Author(s):  
Simone Marchetti ◽  
Duccio Nappini ◽  
Roberto De Prosperis ◽  
Paolo Di Sisto

Abstract This paper describes the design of the Free Power Turbine (FPT) of the LM9000, in particularly the design of its Passive Clearance Control (PCC) system. The LM9000 is the aero-derivative version of the GE90-115B jet engine. Its core engine has many common parts with the GE90; what differs is the booster (low pressure compressor) and the lower pressure turbine (LPT). The booster of the LM9000 is without fan because the engine is not used to provide thrust but torque only, subsequently it has a new flow path [5]. The LPT has instead been replaced by an intermediate pressure turbine (IPT) and by the FPT. The IPT drives the booster, while the FPT is a free low-pressure turbine designed for both power generation and mechanical drive industrial applications, including LNG production plants. Due to its different application, the LM9000 FPT flow path differs sensibly from the GE90 LPT, however as the GE90 it is provided of a clearance control system that cools the casing in order to reduce its radial deflection. It is not the first time that a clearance control system has been used in industrial applications; in GE aero-derivative power turbines is already present in the LM6000 and LMS100. Design constraints, system complexity, high environment variability because the PCC is located outside the GT, harsh environments and long periods of usage still make the design of this component challenging. The design of the PCC has been supported by extensive heat transfer and mechanical simulations. Each PCC component has been addressed with a dedicated life calculation and all the blade and seal clearances have been estimated for all the operating conditions of the engine. Simulations have been validated by an extensive test campaign performed on the first engine.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
R. Pichler ◽  
V. Michelassi ◽  
R. Sandberg ◽  
J. Ong

Blade-to-blade interactions in a low-pressure turbine (LPT) were investigated using highly resolved compressible large eddy simulations (LESs). For a realistic setup, a stator and rotor configuration with profiles typical of LPTs was used. Simulations were conducted with an in-house solver varying the gap size between stator and rotor from 21.5% to 43% rotor chord. To investigate the effect of the gap size on the prevailing loss mechanisms, a loss breakdown was conducted. It was found that in the large gap (LG) size case, the turbulence kinetic energy (TKE) levels of the stator wake close to the rotor leading edge were only one third of those in the small gap (SG) case, due to the longer distance of constant area mixing. The small time-averaged suction side separation on the blade, found in the LG case, disappeared in the SG calculations, confirming how stronger wakes can keep the boundary layer attached. The higher intensity wake impinging on the blade, however, did not affect the time-averaged losses calculated using the control volume approach of Denton. On the other hand, losses computed by taking cross sections upstream and downstream of the blade revealed a greater distortion loss generated by the stator wakes in the SG case. Despite the suction side separation suppression, the SG case gave higher losses overall due to the incoming wake turbulent kinetic energy amplification along the blade passage.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Silvio Chemnitz ◽  
Reinhard Niehuis

Abstract The development and verification of new turbulence models for Reynolds-averaged Navier–Stokes (RANS) equation-based numerical methods require reliable experimental data with a deep understanding of the underlying turbulence mechanisms. High accurate turbulence measurements are normally limited to simplified test cases under optimal experimental conditions. This work presents comprehensive three-dimensional data of turbulent flow quantities, comparing advanced constant temperature anemometry (CTA) and stereoscopic particle image velocimetry (PIV) methods under realistic test conditions. The experiments are conducted downstream of a linear, low-pressure turbine cascade at engine relevant high-speed operating conditions. The special combination of high subsonic Mach and low Reynolds number results in a low density test environment, challenging for all applied measurement techniques. Detailed discussions about influences affecting the measured result for each specific measuring technique are given. The presented time mean fields as well as total turbulence data demonstrate with an average deviation of ΔTu<0.4% and ΔC/Cref<0.9% an extraordinary good agreement between the results from the triple sensor hot-wire probe and the 2D3C-PIV setup. Most differences between PIV and CTA can be explained by the finite probe size and individual geometry.


Author(s):  
D. Lengani ◽  
D. Simoni ◽  
M. Ubaldi ◽  
P. Zunino ◽  
F. Bertini

Abstract The boundary layer developing over the suction side of a low pressure turbine cascade operating under unsteady inflow conditions has been experimentally investigated. Time-resolved Particle Image Velocimetry (PIV) measurements have been performed in two orthogonal planes, the blade to blade and a wall parallel plane embedded within the boundary layer, for two different wake reduced frequencies. Proper Orthogonal Decomposition (POD) has been used to analyze the data and to provide an interpretation of the most significant flow structures for each phase of the wake passing cycle. To this purpose, a POD based procedure that sorts the data synchronizing the measurements of the two planes has been developed. Phase averaged data are then obtained for both cases. Moreover, once properly sorted, POD has been applied to sub-ensembles of data at the same relative phase within the wake passing cycle. Detailed information on the most energetic turbulent structures at a particular phase are obtained with this procedure (called phased POD), overcoming the limit of classical phase average that just provides a statistical representation of the turbulence field. Furthermore, the synchronization of the measurements in the two planes allows the computation of the characteristic dimension of boundary layer structures that are responsible for transition. These structures are often identified as vortical filaments parallel to the wall, typically referred to as boundary layer streaks. The largest and most energetic structures are observed when the wake centerline passes over the rear part of the suction side, and they appear practically the same for both reduced frequencies. The passing wake forces transition leading to the breakdown of the boundary layer streaks. Otherwise, the largest differences between the low and high reduced frequency are observed in the calmed region. The post-processing of these two planes further allowed us to compute the spacing of the streaks and make it non-dimensional by the boundary layer displacement thickness observed for each phase. The non-dimensional value of the streaks spacing is about constant, irrespective of the reduced frequency.


2013 ◽  
Vol 1516 ◽  
pp. 49-58 ◽  
Author(s):  
B. P. Bewlay ◽  
M. Weimer ◽  
T. Kelly ◽  
A. Suzuki ◽  
P.R. Subramanian

ABSTRACTThe present article will describe the science and technology of titanium aluminide (TiAl) alloys and the engineering development of TiAl for commercial aircraft engine applications. The GEnxTM engine is the first commercial aircraft engine that is flying titanium aluminide (alloy 4822) blades and it represents a major advance in propulsion efficiency, realizing a 20% reduction in fuel consumption, a 50% reduction in noise, and an 80% reduction in NOx emissions compared with prior engines in its class. The GEnxTM uses the latest materials and design processes to reduce weight, improve performance, and reduce maintenance costs.GE’s TiAl low-pressure turbine blade production status will be discussed along with the history of implementation. In 2006, GE began to explore near net shape casting as an alternative to the initial overstock conventional gravity casting plus machining approach. To date, more than 40,000 TiAl low-pressure turbine blades have been manufactured for the GEnxTM 1B (Boeing 787) and the GEnxTM 2B (Boeing 747-8) applications. The implementation of TiAl in other GE and non-GE engines will also be discussed.


Sign in / Sign up

Export Citation Format

Share Document