Current Status on Chromium Research and Its Implications for Health and Risk Assessment

Author(s):  
Rachel M. Speer ◽  
John Pierce Wise
Parasitology ◽  
1999 ◽  
Vol 117 (7) ◽  
pp. 205-212 ◽  
Author(s):  
C. J. GIBSON ◽  
C. N. HAAS ◽  
J. B. ROSE

Throughout the past decade much research has been directed towards identifying the occurrence, epidemiology, and risks associated with waterborne protozoa. While outbreaks are continually documented, sporadic cases of disease associated with exposure to low levels of waterborne protozoa are of increasing concern. Current methodologies may not be sensitive enough to define these low levels of disease. However, risk assessment methods may be utilised to address these low level contamination events. The purpose of this article is to provide an introduction to microbial risk assessment for waterborne protozoa. Risk assessment is a useful tool for evaluating relative risks and can be used for development of policies to decrease risks. Numerous studies have been published on risk assessment methods for pathogenic protozoa including Cryptosporidium and Giardia. One common notion prevails: microbial risk assessment presents interesting complications to the traditional chemical risk assessment paradigm. Single microbial exposures (non-threshold) are capable of causing symptomatic illness unlike traditional chemical exposures, which require a threshold to be reached. Due to the lack of efficient recovery and detection methods for protozoa, we may be underestimating the occurrence, concentration and distribution of these pathogenic micro-organisms. To better utilize the tool of microbial risk assessment for risk management practices, future research should focus in the area of exposure assessment.


2012 ◽  
Vol 12 (3) ◽  
pp. 2-11 ◽  
Author(s):  
Wayne Kye ◽  
Robert Davidson ◽  
John Martin ◽  
Steven Engebretson

Author(s):  
Seung-Mi Lee ◽  
Hee-Jung Ahn ◽  
Sun-Young Jung ◽  
Seokyung Hahn ◽  
Byung-Joo Park

Author(s):  
Oliver J. Hodgson ◽  
Dennis W. J. Keen ◽  
Malcolm Toft

A Pipeline Integrity Management System (PIMS) is a comprehensive, systematic, and integrated set of arrangements implemented by an operator to assess, mitigate, and manage pipeline risk. Over the past 16 years, Penspen have performed over 30 PIMS audits of pipeline operators internationally. This paper presents the collated findings from these audits, and examines the common areas in which operators have fallen short of best practice. The paper concludes with a series of recommendations based on the findings, which can be adopted by operators to improve their PIMS arrangements and practices. Penspen’s standardized 17 -element PIMS Model takes a holistic view of pipeline integrity. The audits, which are based on the Model, assess the adequacy and effectiveness of operators’ management systems and arrangements in keeping risks to people, the environment, and to the business to acceptable levels, given the anticipated pipeline operating conditions and taking into account the pipeline’s history and current status. Starting at the ‘top level’ of a PIMS, the audits consider the adequacy of operators’ pipeline policies, objectives, and performance metrics, and how these are subject to monitoring, review, and audit. The audits look at the organization responsible for managing the integrity of pipelines, and examine how all those with a role to play in the wider PIMS work together to this end. The numerous activities that take place during a pipeline’s lifecycle are investigated, to assess how the risk assessment results are used to determine the control and mitigation measures to be implemented during the pipeline’s design, construction, handover, commissioning, operation, inspection and maintenance, and how the operator ensures the effectiveness of these measures. The audits also study those ‘supporting’ processes and systems which play an important part in pipeline integrity management, including procurement, emergency response and recovery, incident investigation, change control, document and data management, and legal and code compliance. The collated results from the 30+ audits reveal that while operators typically have good control systems in place for the project stages of the pipeline lifecycle, controls for the operational stages have been found to be less robust. In terms of management and organization, operators can fail to recognize how many different individuals and teams have a role to play in the management of pipeline integrity. Furthermore, while operators often have good corporate systems in place for change control, emergency response, and risk assessment, such systems may not take into account pipeline-specific risks or requirements. Operators can tend to focus on pipeline safety and/or environmental-related risks, when through holistic assessment it can be shown that risks associated with production interruptions will tend to drive actions in practice.


Sign in / Sign up

Export Citation Format

Share Document