Parameter Interpretation for Fractured Volcanic Reservoirs

Author(s):  
Qiquan Ran ◽  
Yongjun Wang ◽  
Yuanhui Sun ◽  
Lin Yan ◽  
Min Tong
2018 ◽  
Vol 37 (2) ◽  
pp. 607-625 ◽  
Author(s):  
Haitao Sun ◽  
Dakang Zhong ◽  
Weijia Zhan

To explain the strong spatial heterogeneity of volcanic reservoirs porosity in the Songliao Basin and provide new ideas for predicting good volcanic reservoirs in other similar basins, the relationship between the pore evolution process and lithology of volcanic reservoirs has been described in this article. With the description and interpretation of core, thin section, scanning electron microscope, and the results of mercury injection experiment, this article clarifies the lithology, pore types, and pore structure features of the volcanic reservoirs in the Songliao Basin. The rocks of volcanic reservoirs in study area contain pyroclastic rock and volcanic lavas. The most common lithologies are rhyolite, volcanic breccia, and volcanic tuff. The pore size, morphology, and structure vary greatly between these three lithologies, the reason of which we think is the different volcanic eruption process as well as rock composition and its structure. The digenetic evolution of rhyolite includes gas dissipation of magmatic condensation; vesicles fulfilling by hydrothermal fluid; kaolinization and sericitization of feldspar phenocrysts; carbonation, devitrification, and recrystallization of felsic matrix; and finally, the dissolution of feldspar phenocrysts and felsic matrix. As for volcanic breccia, it usually go through the compaction, quartz and calcite filling the original pores between volcanic breccias, and dissolution of mineral debris together with tuff matrix. Similar with the rhyolite, volcanic tuff also undergoes the carbonation and kaolinization of felsic matrix, the dissolution of feldspar and felsic matrix, and compaction. Due to these comprehensive processes, a comprehensive analysis of volcanic rock lithology, which can indicate lithology distribution vertically and horizontally, is very necessary during volcanic reservoirs evaluation and prediction. These detailed analyses will help explorers to find potential reservoirs by distinguishing the diagenetic evolution and pore characteristic of volcanic reservoirs.


Author(s):  
Morten L. Hjuler ◽  
Niels H. Schovsbo ◽  
Gunver K. Pedersen ◽  
John R. Hopper

The onshore Nuussuaq Basin in West Greenland is important for hydrocarbon exploration since many of the key petroleum systems components are well exposed and accessible for study. The basin has thus long served as an analogue for offshore exploration. The discovery of oil seeps on Disko, Nuussuaq, Ubekendt Ejland, and Svartenhuk Halvø (Fig. 1) in the early 1990s resulted in exploration onshore as well. In several wells, oil stains were observed in both the siliciclastic sandstone and in the volcanic series. An important aspect of any petroleum system is a high quality reservoir rock. The aim of this paper is to review petrophysical aspects of the reservoir potential of key stratigraphic intervals within the Nuussuaq and West Greenland Basalt groups. Reservoir parameters and porosity–permeability trends for potential siliciclastic and volcanic reservoirs within the relevant formations of the Nuussuaq Basin are discussed below.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Shijun Huang ◽  
Jiaojiao Zhang ◽  
Sidong Fang ◽  
Xifeng Wang

In shale gas reservoirs, the production data analysis method is widely used to invert reservoir and fracture parameter, and productivity prediction. Compared with numerical models and semianalytical models, which have high computational cost, the analytical model is mostly used in the production data analysis method to characterize the complex fracture network formed after fracturing. However, most of the current calculation models ignore the uneven support of fractures, and most of them use a single supported fracture model to describe the flow characteristics, which magnifies the role of supported fracture to a certain extent. Therefore, in this study, firstly, the fractures are divided into supported fractures and unsupported fractures. According to the near-well supported fractures and far-well unsupported fractures, the SRV zone is divided into outer SRV and inner SRV. The four areas are characterized by different seepage models, and the analytical solutions of the models are obtained by Laplace transform and inverse transform. Secondly, the material balance pseudotime is introduced to process the production data under the conditions of variable production and variable pressure. The double logarithmic curves of normalized production rate, rate integration, the derivative of the integration, and material balance pseudotime are established, and the parameters are interpreted by fitting the theoretical curve to the measured data. Then, the accuracy of the method is verified by comparison the parameter interpretation results with well test results, and the influence of parameters such as the half-length and permeability of supported and unsupported fractures on gas production is analyzed. Finally, the proposed method is applied to four field cases in southwest China. This paper mainly establishes an analytical method for parameter interpretation after hydraulic fracturing based on the production data analysis method considering the uneven support of fractures, which is of great significance for understanding the mechanism of fracturing stimulation, optimization of fracturing parameters, and gas production forecast.


Author(s):  
Caineng Zou ◽  
Guangya Zhang ◽  
Rukai Zhu ◽  
Xuanjun Yuan ◽  
Xia Zhao ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document