CALIBRATION OF INERT GAS EXCHANGE IN THE MOUSE

1971 ◽  
pp. 179-191 ◽  
Author(s):  
Edward T. Flynn ◽  
C.J. Lambertsen
Keyword(s):  
2001 ◽  
Vol 95 (6) ◽  
pp. 1414-1421 ◽  
Author(s):  
Matthias Hübler ◽  
Jennifer E. Souders ◽  
Erin D. Shade ◽  
Nayak L. Polissar ◽  
Carmel Schimmel ◽  
...  

Background Perfluorocarbon (PFC) liquids are known to improve gas exchange and pulmonary function in various models of acute respiratory failure. Vaporization has been recently reported as a new method of delivering PFC to the lung. Our aim was to study the effect of PFC vapor on the ventilation/perfusion (VA/Q) matching and relative pulmonary blood flow (Qrel) distribution. Methods In nine sheep, lung injury was induced using oleic acid. Four sheep were treated with vaporized perfluorohexane (PFX) for 30 min, whereas the remaining sheep served as control animals. Vaporization was achieved using a modified isoflurane vaporizer. The animals were studied for 90 min after vaporization. VA/Q distributions were estimated using the multiple inert gas elimination technique. Change in Qrel distribution was assessed using fluorescent-labeled microspheres. Results Treatment with PFX vapor improved oxygenation significantly and led to significantly lower shunt values (P < 0.05, repeated-measures analysis of covariance). Analysis of the multiple inert gas elimination technique data showed that animals treated with PFX vapor demonstrated a higher VA/Q heterogeneity than the control animals (P < 0.05, repeated-measures analysis of covariance). Microsphere data showed a redistribution of Qrel attributable to oleic acid injury. Qrel shifted from areas that were initially high-flow to areas that were initially low-flow, with no difference in redistribution between the groups. After established injury, Qrel was redistributed to the nondependent lung areas in control animals, whereas Qrel distribution did not change in treatment animals. Conclusion In oleic acid lung injury, treatment with PFX vapor improves gas exchange by increasing VA/Q heterogeneity in the whole lung without a significant change in gravitational gradient.


1986 ◽  
Vol 60 (5) ◽  
pp. 1590-1598 ◽  
Author(s):  
M. D. Hammond ◽  
G. E. Gale ◽  
K. S. Kapitan ◽  
A. Ries ◽  
P. D. Wagner

Previous studies have shown both worsening ventilation-perfusion (VA/Q) relationships and the development of diffusion limitation during exercise at simulated altitude and suggested that similar changes could occur even at sea level. We used the multiple-inert gas-elimination technique to further study gas exchange during exercise in healthy subjects at sea level. Mixed expired and arterial respiratory and inert gas tensions, cardiac output, heart rate, minute ventilation, respiratory rate, and blood temperature were recorded at rest and during steady-state exercise in the following order: rest, minimal exercise (75 W), heavy exercise (300 W), heavy exercise breathing 100% O2, repeat rest, moderate exercise (225 W), and light exercise (150 W). Alveolar-to-arterial O2 tension difference increased linearly with O2 uptake (VO2) (6.1 Torr X min-1 X 1(-1) VO2). This could be fully explained by measured VA/Q inequality at mean VO2 less than 2.5 l X min-1. At higher VO2, the increase in alveolar-to-arterial O2 tension difference could not be explained by VA/Q inequality alone, suggesting the development of diffusion limitation. VA/Q inequality increased significantly during exercise (mean log SD of perfusion increased from 0.28 +/- 0.13 at rest to 0.58 +/- 0.30 at VO2 = 4.0 l X min-1, P less than 0.01). This increase was not reversed by 100% O2 breathing and appeared to persist at least transiently following exercise. These results confirm and extend the earlier suggestions (8, 21) of increasing VA/Q inequality and O2 diffusion limitation during heavy exercise at sea level in normal subjects and demonstrate that these changes are independent of the order of performance of exercise.


2003 ◽  
Vol 94 (3) ◽  
pp. 1186-1192 ◽  
Author(s):  
G. Kim Prisk ◽  
Harold J. B. Guy ◽  
John B. West ◽  
James W. Reed

The analysis of the gas in a single expirate has long been used to estimate the degree of ventilation-perfusion (V˙a/Q˙) inequality in the lung. To further validate this estimate, we examined three measures ofV˙a/Q˙ inhomogeneity calculated from a single full exhalation in nine anesthetized mongrel dogs under control conditions and after exposure to aerosolized methacholine. These measurements were then compared with arterial blood gases and with measurements of V˙a/Q˙ inhomogeneity obtained using the multiple inert gas elimination technique. The slope of the instantaneous respiratory exchange ratio (R slope) vs. expired volume was poorly correlated with independent measures, probably because of the curvilinear nature of the relationship due to continuing gas exchange. When R was converted to the intrabreathV˙a/Q˙ (iV˙/Q˙), the best index was the slope of iV˙/Q˙ vs. volume over phase III (iV˙/Q˙slope). This was strongly correlated with independent measures, especially those relating to inhomogeneity of perfusion. The correlations for iV˙/Q˙ slope and R slope considerably improved when only the first half of phase III was considered. We conclude that a useful noninvasive measurement ofV˙a/Q˙ inhomogeneity can be derived from the intrabreath respiratory exchange ratio.


1979 ◽  
Vol 47 (6) ◽  
pp. 1239-1244 ◽  
Author(s):  
C. W. Dueker ◽  
C. J. Lambertsen ◽  
J. J. Rosowski ◽  
J. C. Saunders

Nitrous oxide entry into the middle ear gas space was studied in cats in relation to anesthesia and the vestibular dysfunction caused by isobaric inert gas counter-diffusion in diving. A catheter implanted in the auditory bulla was used for direct gas sampling and pressure measurements. Experiments were designed to evaluate the participation of the eustachian tube, mucosal blood vessels, and tympanic membrane in middle ear gas exchange. The eustachian tube did not contribute to N2O entry and the mucosal blood supply only contributed about one-third of the total N2O accumulation. Diffusion across the tympanic membrane accounted for most of the N2O entering the middle ear from ambient and respiratory environments containing N2O.


1982 ◽  
Vol 52 (3) ◽  
pp. 683-689 ◽  
Author(s):  
H. T. Robertson ◽  
R. L. Coffey ◽  
T. A. Standaert ◽  
W. E. Truog

Pulmonary gas exchange during high-frequency low-tidal volume ventilation (HFV) (10 Hz, 4.8 ml/kg) was compared with conventional ventilation (CV) and an identical inspired fresh gas flow in pentobarbital-anesthetized dogs. Comparing respiratory and infused inert gas exchange (Wagner et al., J. Appl. Physiol. 36: 585--599, 1974) during HFV and CV, the efficiency of oxygenation was not different, but the Bohr physiological dead space ratio was greater on HFV (61.5 +/- 2.2% vs. 50.6 +/- 1.4%). However, the elimination of the most soluble inert gas (acetone) was markedly enhanced by HFV. The increased elimination of the soluble infused inert gases during HFV compared with CV may be related to the extensive intraregional gas mixing that allows the conducting airways to serve as a capacitance for the soluble inert gases. Comparing as exchange during HFV with three different density carrier gases (He, N2, and Ar), the efficiency of elimination of Co2 or the intravenously infused inert gases was greatest with He-O2. However, the alveolar-arterial partial pressure difference for O2 on He-O2 exceeded that on N2-O2 by 5.4 Torr during HFV. The finding agrees with similar observations during CV, suggesting that this aspect of gas exchange is not substantially altered by HFV.


1982 ◽  
Vol 100 (2) ◽  
pp. 284-290 ◽  
Author(s):  
William E. Truog ◽  
Raymond K. Lyrene ◽  
Thomas A. Standaert ◽  
Janet Murphy ◽  
David E. Woodrum

1975 ◽  
Vol 38 (6) ◽  
pp. 1099-1109 ◽  
Author(s):  
P. D. Wagner ◽  
R. B. Laravuso ◽  
E. Goldzimmer ◽  
P. F. Naumann ◽  
J. B. West

We have recently described a new method for measuring distributions of ventilation-perfusion ratios (VA/Q) based on inert gas elimination. Here we report the initial application of the method in normal dogs and in dogs with pulmonary embolism, pulmonary edema, and pneumonia. Characteristic distributions appropriate to the known effects of each lesion were observed. Comparison with traditional indices of gas exchange revealed that the arterial PO2 calculated from the distributions agreed well with measured values, as did the shunts indicated by the method and by the arterial PO2 while breathing 100 per cent 02. Also the Bohr dead space closely matched the dispersion of ventilation in realtion to VA/Q. Assumptions made in the method were critically evaluated and appear justified. These include the existence of a steady state of gas exchange, an alveolar-end-capillary diffusion equilibration, and the fact that all of the observered VA/Q inequality occurs between gas exchange units in parallel. However, theoretical analysis suggests that the method can detect failure of diffusion equilbration across the blood-gas barrier should it exist. These results suggest that the method is well-suited to clinical investigation of patients with pulmonary disease.


1979 ◽  
Vol 47 (5) ◽  
pp. 1112-1117 ◽  
Author(s):  
W. E. Truog ◽  
M. P. Hlastala ◽  
T. A. Standaert ◽  
H. P. McKenna ◽  
W. A. Hodson

The effect of oxygen breathing on shunt and ventilation-perfusion ratios (VA/Q) in anesthetized rats was studied using a modification of the multiple inert gas elimination technique. Base-line analyses showed hypoxemia in some animals breathing room air (arterial O2 tensions 48-70 Torr) associated with intrapulmonary shunts ranging from 0 to 22%, and variable low VA/Q lung regions as determined by calculation of the inert gas arterial-alveolar difference curve. Of nine rats that breathed 100% oxygen for 30 min, three showed increases in shunt (0% leads to 19%, 1.5% leads to 16%, 11% leads to 40%). These three animals had larger preexisting low VA/Q regions than the six that developed no shunt (0.48 +/- 0.15 vs. 0.17 +/- 0.03 (mean +/- SD); P less than 0.05). These data are compatible with the theory of absorption atelectasis. This study documents the usefulness of the inert gas elimination technique for studying pulmonary gas exchange problems in small animals.


Sign in / Sign up

Export Citation Format

Share Document