Increasing Early Warning Lead Time Through Improved Transboundary Flood Forecasting in the Gash River Basin, Horn of Africa

2016 ◽  
pp. 183-200 ◽  
Author(s):  
G. Amarnath ◽  
N. Alahacoon ◽  
Y. Gismalla ◽  
Y. Mohammed ◽  
B.R. Sharma ◽  
...  
2018 ◽  
Author(s):  
Li Liu ◽  
Su L. Pan ◽  
Zhi X. Bai ◽  
Yue P. Xu

Abstract. In recent year, flood becomes a serious issue in Tibetan Plateau (TP) due to climate change. Many studies have shown that ensemble flood forecasting based on numerical weather predictions can provide early warning with extended lead time. However, the role of hydrological ensemble prediction in forecasting flood volume and its components over the Yarlung Zangbo River Basin (YZR), China has not been systematically investigated. This study adopts Variable Infiltration Capacity (VIC) model to forecast annual maximum floods (MF) and annual first floods (FF) in YZR based on precipitation, maximum and minimum temperature from European Centre for Medium-Range Weather Forecasts (ECMWF). N-simulations is proposed to account for more scenarios of parameters in VIC and shows improved flood simulation. Ensemble flood forecasting system can skilfully predict MF with a lead time of more than10 days, and has skill in forecasting the snowmelt-related components in about 7 days ahead. The accuracy of forecasts for FF is inferior with a lead time of only 5 days. The performance in 7-day accumulated flood volumes is better than the peak flows. The components in baseflow for FF are irrelevant to lead time, whilst for MF an obvious deterioration in performance with lead time can be perceived. The snowmelt-induced surface runoff is the most poorly captured component by the system, and the well-predicted rainfall-related components are the major contributor for good performance. From this study, it is concluded that snowmelt-induced flood volume plays an important role in YZR Basin especially in FF.


2016 ◽  
Vol 12 (4) ◽  
pp. 10-21
Author(s):  
Veronica Ivanescu ◽  
Radu Drobot

Abstract Flash floods are highly variable phenomena in both time and space. Therefore, tools with the potential to provide early warning are needed to analyse them. In Europe, flash floods often occur on small catchments; it has already been shown that the spatial variability of rainfall has a great impact on the catchment response. The aim of this paper is to use a coupled hydrological-hydraulic model (MIKE SHE/MIKE 11) to determine the rainfall thresholds and transformation coefficients from hourly rain to other durations, which will lead to flooding of the inhabited areas to the ungauged Ungureni catchment. The model was calibrated and validated using a reference discharge previously obtained by UTCB at the downstream gauge section of Teleorman River (Tatarastii de Sus) using MIKE 11 UHM module. Once the rainfall thresholds are determined, they can be used in flood forecasting and issuing warning with lead time for the inhabitants of the two villages located in Ungureni watershed. The method proposed in this paper can be used for other watersheds prone to flooding, so warnings can be issued with lead time.


2021 ◽  
Author(s):  
Mukakarangwa Assoumpta ◽  
Daniel Aja

Abstract The absence of a viable flood early warning system for the Sebeya River catchment continues to impede government efforts toward improving community preparedness, the reduction of flood impacts and relief. This paper reports on a recent study that used satellite data, quantitative precipitation forecasts and the rainfall–runoff model for short-term flood forecasting in the Sebeya catchment. The global precipitation measurement product was used as a satellite rainfall product for model calibration and validation and forecasted European Centre Medium-Range Weather Forecasts (ECMWF) rainfall products were evaluated to forecast flood. Model performance was evaluated by the visual examination of simulated hydrographs, observed hydrographs and a number of performance indicators. The real-time flow forecast assessment was conducted with respect to three different flood warning threshold levels for a 3–24-h lead time. The result for a 3-h lead time showed 72% of hits, 7.5% of false alarms and 9.5% of missed forecasts. The number of hits decreased, as the lead time increased. This study did not consider the uncertainties in observed data, and this can influence the model performance. This work provides a base for future studies to establish a viable flood early warning system in the study area and beyond.


Author(s):  
I Hafiz ◽  
M D Nor ◽  
L M Sidek ◽  
H Basri ◽  
K Fukami ◽  
...  

2021 ◽  
Author(s):  
Karma Tsering ◽  
Manish Shrestha ◽  
Kiran Shakya ◽  
Birendra Bajracharya ◽  
Mir Matin ◽  
...  

AbstractThe Hindu Kush Himalayan region is extremely susceptible to periodic monsoon floods. Early warning systems with the ability to predict floods in advance can benefit tens of millions of people living in the region. Two web-based flood forecasting tools (ECMWF-SPT and HIWAT-SPT) are therefore developed and deployed jointly by SERVIR-HKH and NASA-AST to provide early warning to Bangladesh, Bhutan, and Nepal. ECMWF-SPT provides ensemble forecast up to 15-day lead time, whereas HIWAT-SPT provides deterministic forecast up to 3-day lead time covering almost 100% of the rivers. Hydrological models in conjunction with forecast validation contribute not only to advancing the processes of a forecasting system, but also objectively assess the joint distribution of forecasts and observations in quantifying forecast accuracy. The validation of forecast products has emerged as a priority need to evaluate the worth of the predictive information in terms of quality and consistency. This paper describes the effort made in developing the hydrological forecast systems, the current state of the flood forecast services, and the performance of the forecast evaluation. Both tools are validated using a selection of appropriate metrics in measurement in both probabilistic and deterministic space. The numerical metrics are further complemented by graphical representations of scores and probabilities. It was found that the models had a good performance in capturing high flood events. The evaluation across multiple locations indicates that the model performance and forecast goodness are variable on spatiotemporal scale. The resulting information is used to support good decision-making in risk and resource management.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Chenkai Cai ◽  
Jianqun Wang ◽  
Zhijia Li

Recently, the use of the numerical rainfall forecast has become a common approach to improve the lead time of streamflow forecasts for flood control and reservoir regulation. The control forecasts of five operational global prediction systems from different centers were evaluated against the observed data by a series of area-weighted verification and classification metrics during May to September 2015–2017 in six subcatchments of the Xixian Catchment in the Huaihe River Basin. According to the demand of flood control safety, four different ensemble methods were adopted to reduce the forecast errors of the datasets, especially the errors of missing alarm (MA), which may be detrimental to reservoir regulation and flood control. The results indicate that the raw forecast datasets have large missing alarm errors (MEs) and cannot be directly applied to the extension of flood forecasting lead time. Although the ensemble methods can improve the performance of rainfall forecasts, the missing alarm error is still large, leading to a huge hazard in flood control. To improve the lead time of the flood forecast, as well as avert the risk from rainfall prediction, a new ensemble method was proposed on the basis of support vector regression (SVR). Compared to the other methods, the new method has a better ability in reducing the ME of the forecasts. More specifically, with the use of the new method, the lead time of flood forecasts can be prolonged to at least 3 d without great risk in flood control, which corresponds to the aim of flood prevention and disaster reduction.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1571 ◽  
Author(s):  
Song ◽  
Park ◽  
Lee ◽  
Park ◽  
Song

The runoff from heavy rainfall reaches urban streams quickly, causing them to rise rapidly. It is therefore of great importance to provide sufficient lead time for evacuation planning and decision making. An efficient flood forecasting and warning method is crucial for ensuring adequate lead time. With this objective, this paper proposes an analysis method for a flood forecasting and warning system, and establishes the criteria for issuing urban-stream flash flood warnings based on the amount of rainfall to allow sufficient lead time. The proposed methodology is a nonstructural approach to flood prediction and risk reduction. It considers water level fluctuations during a rainfall event and estimates the upstream (alert point) and downstream (confluence) water levels for water level analysis based on the rainfall intensity and duration. We also investigate the rainfall/runoff and flow rate/water level relationships using the Hydrologic Engineering Center’s Hydrologic Modeling System (HEC-HMS) and the HEC’s River Analysis System (HEC-RAS) models, respectively, and estimate the rainfall threshold for issuing flash flood warnings depending on the backwater state based on actual watershed conditions. We present a methodology for issuing flash flood warnings at a critical point by considering the effects of fluctuations in various backwater conditions in real time, which will provide practical support for decision making by disaster protection workers. The results are compared with real-time water level observations of the Dorim Stream. Finally, we verify the validity of the flash flood warning criteria by comparing the predicted values with the observed values and performing validity analysis.


Sign in / Sign up

Export Citation Format

Share Document