Drug Stability and Degradation Studies

Author(s):  
D. Zhou ◽  
W.R. Porter ◽  
G.G.Z. Zhang
Author(s):  
Deliang Zhou ◽  
William R. Porter ◽  
Geoff G.Z. Zhang

2020 ◽  
Vol 27 (33) ◽  
pp. 5562-5582 ◽  
Author(s):  
He Miao ◽  
Xuehong Chen ◽  
Yepeng Luan

Gemcitabine as a pyrimidine nucleoside analog anticancer drug has high efficacy for a broad spectrum of solid tumors. Gemcitabine is activated within tumor cells by sequential phosphorylation carried out by deoxycytidine kinase to mono-, di-, and triphosphate nucleotides with the last one as the active form. But the instability, drug resistance and toxicity severely limited its utilization in clinics. In the field of medicinal chemistry, prodrugs have proven to be a very effective means for elevating drug stability and decrease undesirable side effects including the nucleoside anticancer drug such as gemcitabine. Many works have been accomplished in design and synthesis of gemcitabine prodrugs, majority of which were summarized in this review.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2735
Author(s):  
Stefano Persano ◽  
Pradip Das ◽  
Teresa Pellegrino

Cancer immunotherapy has shown remarkable results in various cancer types through a range of immunotherapeutic approaches, including chimeric antigen receptor-T cell (CAR-T) therapy, immune checkpoint blockade (ICB), and therapeutic vaccines. Despite the enormous potential of cancer immunotherapy, its application in various clinical settings has been limited by immune evasion and immune suppressive mechanisms occurring locally or systemically, low durable response rates, and severe side effects. In the last decades, the rapid advancement of nanotechnology has been aiming at the development of novel synthetic nanocarriers enabling precise and enhanced delivery of immunotherapeutics, while improving drug stability and effectiveness. Magnetic nanostructured formulations are particularly intriguing because of their easy surface functionalization, low cost, and robust manufacturing procedures, together with their suitability for the implementation of magnetically-guided and heat-based therapeutic strategies. Here, we summarize and discuss the unique features of magnetic-based nanostructures, which can be opportunely designed to potentiate classic immunotherapies, such as therapeutic vaccines, ICB, adoptive cell therapy (ACT), and in situ vaccination. Finally, we focus on how multifunctional magnetic delivery systems can facilitate the anti-tumour therapies relying on multiple immunotherapies and/or other therapeutic modalities. Combinatorial magnetic-based therapies are indeed offering the possibility to overcome current challenges in cancer immunotherapy.


2021 ◽  
Author(s):  
Novita Ayu Irawana Hulu ◽  
Perdinan Sinuhaji ◽  
Kerista Tarigan ◽  
Nisrina Harahap

2012 ◽  
Vol 1432 ◽  
Author(s):  
Ryan M. France ◽  
Myles A. Steiner

ABSTRACTInitial tests are performed regarding the degradation of lattice-mismatched GaInAs solar cells. 1eV metamorphic GaInAs solar cells with 1-2×106 cm-2 threading dislocation density in the active region are irradiated with an 808 nm laser for 2 weeks time under a variety of temperature and illumination conditions. All devices show a small degradation in Voc that is logarithmic with time. The absolute loss in performance after 2 weeks illuminated at 1300 suns equivalent and 125°C is 7 mV Voc and 0.2% efficiency, showing these devices to be relatively stable. The dark current increases with time and is analyzed with a two-diode model. A GaAs control cell degrades at the same rate, suggesting that the observed degradation mechanism is not related to the additional dislocations in the GaInAs devices.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Dimal A. Shah ◽  
Ishita I. Gondalia ◽  
Vandana B. Patel ◽  
Ashok Mahajan ◽  
Usmangani Chhalotiya ◽  
...  

Abstract Background A sensitive, precise, and stability-indicating high-performance thin-layer chromatographic (HPTLC) method has been developed for the analysis of Remogliflozin etabonate in tablet formulation. HPTLC plates precoated with silica gel 60 F254 were used as the stationary phase; methanol: ethyl acetate: toluene: NH3 (2:4:4:0.1, v/v/v) was used as mobile phase, and densitometry was used for the quantitative estimation of the drug. The proposed method was validated with respect to linearity, accuracy, precision, and robustness and applied for the estimation of drug in tablet dosage form. Results The Rf value of Remogliflozin etabonate was observed to be 0.61. The densitometric estimation was performed in reflectance mode at 229 nm. The method was found to be linear in the range of 500–8000 ng/band for Remogliflozin etabonate. The possible degradation pathway was estimated by performing forced degradation studies. The degradant peaks were well resolved from the drug peak with acceptable resolution in their Rf value. Conclusion An accurate and precise high-performance thin-layer chromatographic method has been developed for the quantification of Remogliflozin etabonate in tablets. Forced degradation studies were performed, and drug was found to be highly susceptible to acid, base hydrolysis, and oxidative stress degradation and gets converted into active drug Remogliflozin. Both Remogliflozin etabonate and Remogliflozin bands were well resolved. The method was applied for the analysis of drug in tablet formulation, and it can be used for routine quality control analysis, as well as for the analysis of stability samples.


2021 ◽  
Vol 1 (7) ◽  
pp. 306-306
Author(s):  
Eva Sarkadi‐Priboczki ◽  
Mate Varga ◽  
Ivan Valastyan ◽  
Karoly Brezovcsik ◽  
Andras Fenyvesi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document