TrkB Receptor Agonist 7,8-Dihydroxyflavone and Its Therapeutic Potential for Traumatic Brain Injury

Author(s):  
J. Romeika ◽  
M. Wurzelmann ◽  
D. Sun
2021 ◽  
Vol 11 (6) ◽  
pp. 806
Author(s):  
Thorsten Rudroff ◽  
Craig D. Workman

Mild traumatic brain injury (mTBI) has been defined as a transient (<24 h) condition of confusion and/or loss of consciousness for less than 30 min after brain injury and can result in short- and long-term motor and cognitive impairments. Recent studies have documented the therapeutic potential of non-invasive neuromodulation techniques for the enhancement of cognitive and motor function in mTBI. Alongside repetitive transcranial magnetic stimulation (rTMS), the main technique used for this purpose is transcranial direct current stimulation (tDCS). The focus of this review was to provide a detailed, comprehensive (i.e., both cognitive and motor impairment) overview of the literature regarding therapeutic tDCS paradigms after mTBI. A publication search of the PubMed, Scopus, CINAHL, and PsycINFO databases was performed to identify records that applied tDCS in mTBI. The publication search yielded 14,422 records from all of the databases, however, only three met the inclusion criteria and were included in the final review. Based on the review, there is limited evidence of tDCS improving cognitive and motor performance. Surprisingly, there were only three studies that used tDCS in mTBI, which highlights an urgent need for more research to provide additional insights into ideal therapeutic brain targets and optimized stimulation parameters.


2020 ◽  
Vol 72 (6) ◽  
pp. 1579-1592
Author(s):  
Agata Ciechanowska ◽  
Katarzyna Popiolek-Barczyk ◽  
Katarzyna Ciapała ◽  
Katarzyna Pawlik ◽  
Marco Oggioni ◽  
...  

Abstract Background Every year, millions of people suffer from various forms of traumatic brain injury (TBI), and new approaches with therapeutic potential are required. Although chemokines are known to be involved in brain injury, the importance of X-C motif chemokine ligand 1 (XCL1) and its receptors, X-C motif chemokine receptor 1 (XCR1) and alpha-9 integrin (ITGA9), in the progression of TBI remain unknown. Methods Using RT-qPCR/Western blot/ELISA techniques, changes in the mRNA/protein levels of XCL1 and its two receptors, in brain areas at different time points were measured in a mouse model of TBI. Moreover, their cellular origin and possible changes in expression were evaluated in primary glial cell cultures. Results Studies revealed the spatiotemporal upregulation of the mRNA expression of XCL1, XCR1 and ITGA9 in all the examined brain areas (cortex, thalamus, and hippocampus) and at most of the evaluated stages after brain injury (24 h; 4, 7 days; 2, 5 weeks), except for ITGA9 in the thalamus. Moreover, changes in XCL1 protein levels occurred in all the studied brain structures; the strongest upregulation was observed 24 h after trauma. Our in vitro experiments proved that primary murine microglial and astroglial cells expressed XCR1 and ITGA9, however they seemed not to be a main source of XCL1. Conclusions These findings indicate that the XCL1/XCR1 and XCL1/ITGA9 axes may participate in the development of TBI. The XCL1 can be considered as one of the triggers of secondary injury, therefore XCR1 and ITGA9 may be important targets for pharmacological intervention after traumatic brain injury. Graphic abstract


2011 ◽  
Vol 114 (1) ◽  
pp. 102-115 ◽  
Author(s):  
Ye Xiong ◽  
Asim Mahmood ◽  
Yuling Meng ◽  
Yanlu Zhang ◽  
Zheng Gang Zhang ◽  
...  

Object This study was designed to investigate the efficacy of delayed thymosin β4 (Tβ4) treatment of traumatic brain injury (TBI) in rats. Methods Young adult male Wistar rats were divided into the following groups: 1) sham group (6 rats); 2) TBI + saline group (9 rats); 3) and TBI + Tβ4 group (10 rats). Traumatic brain injury was induced by controlled cortical impact over the left parietal cortex. Thymosin β4 (6 mg/kg) or saline was administered intraperitoneally starting at Day 1 and then every 3 days for an additional 4 doses. Neurological function was assessed using a modified neurological severity score (mNSS), foot fault, and Morris water maze tests. Animals were killed 35 days after injury, and brain sections were stained for immunohistochemistry to assess angiogenesis, neurogenesis, and oligodendrogenesis after Tβ4 treatment. Results Compared with the saline treatment, delayed Tβ4 treatment did not affect lesion volume but significantly reduced hippocampal cell loss, enhanced angiogenesis and neurogenesis in the injured cortex and hippocampus, increased oligodendrogenesis in the CA3 region, and significantly improved sensorimotor functional recovery and spatial learning. Conclusions These data for the first time demonstrate that delayed administration of Tβ4 significantly improves histological and functional outcomes in rats with TBI, indicating that Tβ4 has considerable therapeutic potential for patients with TBI.


2018 ◽  
Vol 46 (6) ◽  
pp. 2532-2542 ◽  
Author(s):  
Lijun Yang ◽  
Feng Wang ◽  
Liang Yang ◽  
Yunchao Yuan ◽  
Yan Chen ◽  
...  

Background/Aims: Traumatic brain injury (TBI) is a complex neurological injury in young adults lacking effective treatment. Emerging evidences suggest that inflammation contributes to the secondary brain injury following TBI, including breakdown of the blood brain barrier (BBB), subsequent edema and neurological deterioration. High mobility group box-1 (HMGB1) has been identified as a key cytokine in the inflammation reaction following TBI. Here, we investigated the therapeutic efficacy of HMGB1 A-box fragment, an antagonist competing with full-length HMGB1 for receptor binding, against TBI. Methods: TBI was induced by controlled cortical impact (CCI) in adult male mice. HMGB1 A-box fragment was given intravenously at 2 mg/kg/day for 3 days after CCI. HMGB1 A-box-treated CCI mice were compared with saline-treated CCI mice and sham mice in terms of BBB disruption evaluated by Evan’s blue extravasation, brain edema by brain water content, cell death by propidium iodide staining, inflammation by Western blot and ELISA assay for cytokine productions, as well as neurological functions by the modified Neurological Severity Score, wire grip and beam walking tests. Results: HMGB1 A-box reversed brain damages in the mice following TBI. It significantly reduced brain edema by protecting integrity of the BBB, ameliorated cell degeneration, and decreased expression of pro-inflammatory cytokines released in injured brain after TBI. These cellular and molecular effects were accompanied by improved behavioral performance in TBI mice. Notably, HMGB1 A-box blocked IL-1β-induced HMGB1 release, and preferentially attenuated TLR4, Myd88 and P65 in astrocyte cultures. Conclusion: Our data suggest that HMGB1 is involved in CCI-induced TBI, which can be inhibited by HMGB1 A-box fragment. Therefore, HMGB1 A-box fragment may have therapeutic potential for the secondary brain damages in TBI.


2018 ◽  
Vol 39 (6) ◽  
pp. 989-998 ◽  
Author(s):  
Jan Dobrovolny ◽  
Martin Smrcka ◽  
Julie Bienertova-Vasku

2011 ◽  
Vol 114 (2) ◽  
pp. 549-559 ◽  
Author(s):  
Ye Xiong ◽  
Asim Mahmood ◽  
Yanlu Zhang ◽  
Yuling Meng ◽  
Zheng Gang Zhang ◽  
...  

Object Carbamylated erythropoietin (CEPO) is a modified erythropoietin molecule that does not affect hematocrit. In this study, the authors compared the efficacy of a single dose with a triple dose of CEPO treatment for traumatic brain injury (TBI) in rats. Methods Traumatic brain injury was induced by controlled cortical impact over the left parietal cortex. Carbamylated erythropoietin (50 μg/kg) was administered intraperitoneally in rats with TBI at 6 hours (CEPO × 1) or at 6, 24, and 48 hours (CEPO × 3) postinjury. Neurological function was assessed using a modified neurological severity score and foot fault and Morris water maze tests. Animals were killed 35 days after injury, and brain sections were stained for immunohistochemical analysis to assess lesion volume, cell loss, cell proliferation, angiogenesis, and neurogenesis after CEPO treatment. Results Compared with the vehicle treatment, single treatment of CEPO (6 hours) significantly reduced lesion volume and hippocampal cell loss, enhanced angiogenesis and neurogenesis in the injured cortex and hippocampus, and significantly improved sensorimotor functional recovery and spatial learning in rats after TBI. Importantly, triple dosing of CEPO (6, 24, and 48 hours) further reduced lesion volume and improved functional recovery and neurogenesis compared with the CEPO × 1 group. Conclusions The authors' results indicate that CEPO has considerable therapeutic potential in TBI and related pathologies and furthermore that repeated dosing in the subacute phase might have important pharmacological relevance.


Sign in / Sign up

Export Citation Format

Share Document