vehicle treatment
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 37)

H-INDEX

22
(FIVE YEARS 4)

2022 ◽  
Vol 44 (1) ◽  
pp. 257-272
Author(s):  
Hyun-Bae Kang ◽  
Shin-Hye Kim ◽  
Sun-Ho Uhm ◽  
Do-Kyung Kim ◽  
Nam-Seob Lee ◽  
...  

Vascular dementia (VaD) is characterized by a time-dependent memory deficit and essentially combined with evidence of neuroinflammation. Thus, polyphenol-rich natural plants, which possess anti-inflammatory properties, have received much scientific attention. This study investigated whether Perilla frutescens leaf extract (PFL) exerts therapeutic efficacy against VaD. Sprague Dawley rats were divided into five groups: SO, sham-operated and vehicle treatment; OP, operated and vehicle treatment; PFL-L, operated and low-dose (30 mg/kg) PFL treatment; PFL-M, operated and medium-dose (60 mg/kg) PFL treatment; and PFL-H, operated and high-dose (90 mg/kg) PFL treatment. Two-vessel occlusion and hypovolemia (2VO/H) were employed as a surgical model of VaD, and PFL was given orally perioperatively for 23 days. The rats underwent the Y-maze, Barnes maze, and passive avoidance tests and their brains were subjected to histologic studies. The OP group showed VaD-associated memory deficits, hippocampal neuronal death, and microglial activation; however, the PFL-treated groups showed significant attenuations in all of the above parameters. Using lipopolysaccharide (LPS)-stimulated BV-2 cells, a murine microglial cell line, we measured PFL-mediated changes on the production of nitric oxide (NO), TNF-α, and IL-6, and the activities of their upstream MAP kinases (MAPKs)/NFκB/inducible NO synthase (iNOS). The LPS-induced upregulations of NO, TNF-α, and IL-6 production and MAPKs/NFκB/iNOS activities were globally and significantly reversed by 12-h pretreatment of PFL. This suggests that PFL can counteract VaD-associated structural and functional deterioration through the attenuation of neuroinflammation.


Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 99
Author(s):  
So-Dam Kim ◽  
Minha Kim ◽  
Hong-Hua Wu ◽  
Byung Kwan Jin ◽  
Myung-Shin Jeon ◽  
...  

Prunus cerasoides (PC) has been reported to have antimicrobial and anti-inflammatory properties, but its potential as a neuroprotective agent in a mouse model of cerebral ischemia has not been explored. Considering neuroglobin (Ngb), an endogenous neuroprotective factor, as a novel approach to neuroprotection, in this study, Ngb promoter activity, Ngb expression changes, and antioxidant protection by PC extract (PCE) and PC component compounds (PCCs) were analyzed in oxygen–glucose deprivation (OGD)-treated neurons. In vivo analysis involved transient middle cerebral artery occlusion (tMCAO) in mice with pre- and post-treatment exposure to PCE. Following ischemic stroke induction, neurological behavior scores were obtained, and cellular function-related signals were evaluated in the ischemic infarct areas. In addition to PCE, certain component compounds from PCE also significantly increased Ngb levels and attenuated the intracellular ROS production and cytotoxicity seen with OGD in primary neurons. Administration of PCE reduced the infarct volume and improved neurological deficit scores in ischemic stroke mice compared with the vehicle treatment. Increased Ngb levels in infarct penumbra with PCE treatment were also accompanied by decreased markers of apoptosis (activated p38 and cleaved caspase-3). Our findings point to the benefits of Ngb-mediated neuroprotection via PCE and its antioxidant activity in an ischemic stroke model.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tara A. Janes ◽  
Danuzia Ambrozio-Marques ◽  
Sébastien Fournier ◽  
Vincent Joseph ◽  
Jorge Soliz ◽  
...  

Excessive carotid body responsiveness to O2 and/or CO2/H+ stimuli contributes to respiratory instability and apneas during sleep. In hypogonadal men, testosterone supplementation may increase the risk of sleep-disordered breathing; however, the site of action is unknown. The present study tested the hypothesis that testosterone supplementation potentiates carotid body responsiveness to hypoxia in adult male rats. Because testosterone levels decline with age, we also determined whether these effects were age-dependent. In situ hybridization determined that androgen receptor mRNA was present in the carotid bodies and caudal nucleus of the solitary tract of adult (69 days old) and aging (193–206 days old) male rats. In urethane-anesthetized rats injected with testosterone propionate (2 mg/kg; i.p.), peak breathing frequency measured during hypoxia (FiO2 = 0.12) was 11% greater vs. the vehicle treatment group. Interestingly, response intensity following testosterone treatment was positively correlated with animal age. Exposing ex vivo carotid body preparations from young and aging rats to testosterone (5 nM, free testosterone) 90–120 min prior to testing showed that the carotid sinus nerve firing rate during hypoxia (5% CO2 + 95% N2; 15 min) was augmented in both age groups as compared to vehicle (<0.001% DMSO). Ventilatory measurements performed using whole body plethysmography revealed that testosterone supplementation (2 mg/kg; i.p.) 2 h prior reduced apnea frequency during sleep. We conclude that in healthy rats, age-dependent potentiation of the carotid body’s response to hypoxia by acute testosterone supplementation does not favor the occurrence of apneas but rather appears to stabilize breathing during sleep.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A753-A753
Author(s):  
Xiaoyu An ◽  
Kaixia Lian ◽  
Jia Zheng ◽  
Fei Jian ◽  
Henry Li ◽  
...  

BackgroundGout is a chronic inflammatory disease featuring the deposition of monosodium urate (MSU) crystals in the synovial fluid of patients, followed by NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) inflammasome activation and bioactive IL-1β release, which recruits neutrophils to the local inflammation sites. Blocking IL-1β function is becoming a a potent therapeutic approach for gout and gouty arthritis. Conventional MSU-induced peritonitis in C57BL/6 mice provides a simple and rapid evaluation of therapeutics targeting inflammasome activation. However, this murine model has limitations when it comes to the evaluation of human-specific antibodies, for example, anti-human IL-1β (anti-hIL-1β) monoclonal antibodies (mAb). Thus, a murine model to assess the efficacy of anti-hIL-1β mAb is needed. We have developed a hIL-1β knock-in mouse model (hIL-1β HuGEMM™), which is able to facilitate the pre-clinical evaluation of drugs targeting specific human biological molecules especially when mouse ortholog is not available. Therefore, an MSU crystals induced peritonitis model using hIL-1β HuGEMM™ mice provides a robust model to evaluate therapies targeting hIL-1β.MethodsMSU crystals were injected intraperitoneally into human IL-1β (hIL-1β) knock-in mice, where the coding sequence of mouse IL-1β was replaced by hIL-1β. Prior to MSU crystal administration, mice received treatment of either vehicle or anti-hIL-1β antibody. Six hours facilitate post MSU crystal injection, serum and lavage flushed with PBS were collected. Subsequently, cytokine protein levels in the serum were determined by MSD, and the population of polymorphonuclear leukocytes (PMNs) (live CD11b+ Ly-6GHi cells) in the lavage was analysed by flow cytometry.ResultsThe vehicle treatment group showed a dramatic increase in hIL-1β secretion and PMN leukocytes, in comparison to the group that did not receive MSU, which suggests a successful induction of acute inflammatory response in the peritoneal cavity. In contrast, mice that received a single administration of anti-hIL-1β antibody 24 hours prior to MSU injection exhibited a significantly lower level of hIL-1β when compared to the vehicle treatment group, which implies that the anti-hIL-1β mAb efficaciously neutralized hIL-1β secretion. In addition, TNF-α and IL-6, two further cytokines downstream of IL-1β, were significantly reduced in the anti-hIL-1β mAb treatment group. However, the PMN leukocyte infiltration in the anti-hIL-1β mAb treatment group did not change in comparison to the vehicle group.ConclusionsIn this study, an MSU crystals-induced peritonitis model was successfully established in hIL-1β HuGEMM mice, which has the potential to evaluate immune therapeutics with anti-hIL-1β blockades.


2021 ◽  
Vol 2 ◽  
Author(s):  
Katharine I. K. Beča ◽  
Beatrice M. Girard ◽  
Thomas J. Heppner ◽  
Grant W. Hennig ◽  
Gerald M. Herrera ◽  
...  

In the urinary bladder, mechanosensitive ion channels (MSCs) underlie the transduction of bladder stretch into sensory signals that are relayed to the PNS and CNS. PIEZO1 is a recently identified MSC that is Ca2+ permeable and is widely expressed throughout the lower urinary tract. Recent research indicates that PIEZO1 is activated by mechanical stretch or by pharmacological agonism via Yoda1. Aberrant activation of PIEZO1 has been suggested to play a role in clinical bladder pathologies like partial bladder outlet obstruction and interstitial cystitis/bladder pain syndrome (IC/BPS). In the present study, we show that intravesical instillation of Yoda1 in female Wistar rats leads to increased voiding frequency for up to 16 hours after administration compared to vehicle treatment. In a cyclophosphamide (CYP) model of cystitis, we found that the gene expression of several candidate MSCs (Trpv1, Trpv4, Piezo1, and Piezo2) were all upregulated in the urothelium and detrusor following chronic CYP-induced cystitis, but not acute CYP-induced cystitis. Functionally with this model, we show that Ca2+ activity is increased in urothelial cells following PIEZO1 activation via Yoda1 in acute and intermediate CYP treatment, but not in naïve (no CYP) nor chronic CYP treatment. Lastly, we show that activation of PIEZO1 may contribute to pathological bladder dysfunction through the downregulation of several tight junction genes in the urothelium including claudin-1, claudin-8, and zona occludens-1. Together, these data suggest that PIEZO1 activation plays a role in dysfunctional voiding behavior and may be a future, clinical target for the treatment of pathologies like IC/BPS.


Author(s):  
Wen Ai ◽  
Soochan Bae ◽  
Qingen Ke ◽  
Shi Su ◽  
Ruijian Li ◽  
...  

Background Ischemia/reperfusion (I/R) injury causes overproduction of reactive oxygen species, which are the major culprits of oxidative stress that leads to inflammation, apoptosis, myocardial damage, and dysfunction. Bilirubin acts as a potent endogenous antioxidant that is capable of scavenging various reactive oxygen species. We have previously generated bilirubin nanoparticles (BRNPs) consisting of polyethylene glycol–conjugated bilirubin. In this study, we examined the therapeutic effects of BRNPs on myocardial I/R injury in mice. Methods and Results In vivo imaging using fluorophore encapsulated BRNPs showed BRNPs preferentially targeted to the site of I/R injury in the heart. Cardiac I/R surgery was performed by first ligating the left anterior descending coronary artery. After 45 minutes, reperfusion was achieved by releasing the ligation. BRNPs were administered intraperitoneally at 5 minutes before and 24 hours after reperfusion. Mice that received BRNPs showed significant improvements in their cardiac output, assessed by echocardiogram and pressure volume loop measurements, compared with the ones that received vehicle treatment. BRNPs treatment also significantly reduced the myocardial infarct size in mice that underwent cardiac I/R, compared with the vehicle‐treatment group. In addition, BRNPs effectively suppressed reactive oxygen species and proinflammatory factor levels, as well as the amount of cardiac apoptosis. Conclusions Taken together, BRNPs could exert their therapeutic effects on cardiac I/R injury through attenuation of oxidative stress, apoptosis, and inflammation, providing a novel therapeutic modality for myocardial I/R injury.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Travis K. Warren ◽  
Christopher D. Kane ◽  
Jay Wells ◽  
Kelly S. Stuthman ◽  
Sean A. Van Tongeren ◽  
...  

AbstractEfficacious therapeutics for Ebola virus disease are in great demand. Ebola virus infections mediated by mucosal exposure, and aerosolization in particular, present a novel challenge due to nontypical massive early infection of respiratory lymphoid tissues. We performed a randomized and blinded study to compare outcomes from vehicle-treated and remdesivir-treated rhesus monkeys in a lethal model of infection resulting from aerosolized Ebola virus exposure. Remdesivir treatment initiated 4 days after exposure was associated with a significant survival benefit, significant reduction in serum viral titer, and improvements in clinical pathology biomarker levels and lung histology compared to vehicle treatment. These observations indicate that remdesivir may have value in countering aerosol-induced Ebola virus disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Clinton T. Elfers ◽  
James E. Blevins ◽  
Elizabeth A. Lawson ◽  
Richard Pittner ◽  
David Silva ◽  
...  

Background: Oxytocin is a hypothalamic neuropeptide that participates in the network of appetite regulation. Recently the oxytocin signaling pathway has emerged as an attractive target for treating obesity. However, the short half-life limits its development as a clinical therapeutic. Here we provide results from testing a long-lasting, potent and selective oxytocin analog ASK1476 on its efficacy to reduce food intake and body weight in comparison to the native oxytocin peptide.Methods: ASK1476 features two specific amino acid substitutions in positions 7 and 8 combined with a short polyethylene glycol spacer. Short time dose escalation experiments testing increasing doses of 3 days each were performed in diet-induced overweight (DIO) male rats assessing effects on body weight as well as changes in food intake. Furthermore, DIO rats were tested for changes in body weight, food intake, temperature, and locomotor activity over 28 days of treatment (oxytocin, ASK1476, or vehicle).Results: In dose escalation experiments, significant reductions in food intake relative to baseline were detected beginning with doses of 15 nmol/kg ASK1476 (−15.2 ± 2.3 kcal/d, p = 0.0017) and 20 nmol/kg oxytocin (−11.2.9 ± 2.4 kcal/d, p = 0.0106) with corresponding significant changes in body weight (ASK1476: −5.2 ± 0.8 g, p = 0.0016; oxytocin: −2.6 ± 0.7 g, p = 0.0326). In long-term experiments, there was no difference on body weight change between 120 nmol/kg/d ASK1476 (−71.4 ± 34.2 g, p = 0.039) and 600 nmol/kg/d oxytocin (−91.8 ± 32.2 g, p = 0.035) relative to vehicle (706.9 ± 28.3 g), indicating a stronger dose response for ASK1476. Likewise, both ASK1476 and oxytocin at these doses resulted in similar reductions in 28-day cumulative food intake (ASK1476: −562.7 ± 115.0 kcal, p = 0.0001; oxytocin: −557.1 ± 101.3 kcal, p = 0.0001) relative to vehicle treatment (2716 ± 75.4 kcal), while no effects were detected on locomotor activity or body temperature.Conclusion: This study provides proof-of-concept data demonstrating an oxytocin analog with extended in vivo stability and improved potency to reduce food intake and body weight in DIO animals which could mark a new avenue in anti-obesity drug interventions.


2021 ◽  
Vol 30 (Sup9a) ◽  
pp. XIi-XIxi
Author(s):  
Yuko Mugita ◽  
Takeo Minematsu ◽  
Gojiro Nakagami ◽  
Hiromi Sanada

Objective: One of the most common complications in patients with incontinence is incontinence-associated dermatitis (IAD). This study was conducted to determine the pathophysiology of the healing process of IAD and to develop an effective therapeutic approach according to its pathophysiology. Method: IAD was reproduced on a dorsal rat skin by applying agarose gel containing water and enzymes, and inoculating it with bacteria. Examination of the IAD healing process suggested that the promotion of keratinocyte migration and improvement of basement membrane enhance keratinocyte layer elongations, which contribute to IAD healing. A therapeutic approach using N-(3-oxotetradecanoyl)-L-homoserine lactone, which is one of the acylated homoserine lactones (AHLs) and can promote keratinocyte migration in vitro, was applied on the IAD area in rats. Results: AHL treatment after IAD development resulted in an earlier tipping point for recovery than the vehicle treatment. Histological and immunohistological analyses revealed that the tissue surface was already covered by the epidermis, indicating the results of elongation of the keratinocyte layer from hair follicles. The characteristics of the alignment of basal keratinocytes, the existence of stratum corneum, and the membrane-like distribution of the components of basement membrane were similar to those of a normal epidermis. Conclusion: These results suggested that AHL application possibly contributed to earlier IAD healing before progressing to a severe state. Although elongation of the keratinocyte layer was observed in both the AHL and vehicle groups, the possibility that AHL application promotes IAD healing was suggested. The new concept of the enhancement of keratinocyte migration as a therapeutic approach for IAD would change the skin care strategy for IAD in the healthcare setting.


2021 ◽  
Author(s):  
Colin J Johnston ◽  
Paul F Fitzgerald ◽  
Jena S Gewarges ◽  
Brendon O Watson ◽  
Joanna L Spencer-Segal

Ketamine is an antidepressant drug that interacts with the hypothalamic-pituitary-adrenal (HPA) axis, but whether this interaction is important for its behavioral effect is unknown. The goal of this experiment was to determine whether the behavioral response to ketamine depends on intact HPA axis function. Male and female C57BL/6J mice underwent chronic unpredictable stress prior to ketamine (30 mg/kg, i.p.) or vehicle treatment, with or without the glucocorticoid synthesis inhibitor metyrapone (20 mg/kg, i.p.) to block adrenal corticosterone production. Mice were tested in the forced swim test (FST) and open field test one and two days after injection, respectively. Fecal corticosterone was measured at select time points. No significant drug effects on behavior were observed. Males consistently had higher fecal corticosterone levels and stress-induced increases than females. Ketamine lowered the fecal corticosterone response to the FST only in males. These data show that ketamine after chronic stress decreases the corticosterone response to a novel stressor (the FST) in males, but not females. Corticosterone levels in all mice correlated with immobility in the FST, suggesting that shared neural circuitry could mediate both endocrine and behavioral responses. This circuitry may be ketamine-responsive only in males.


Sign in / Sign up

Export Citation Format

Share Document