Cerebrospinal fluid and brain extracellular fluid in severe brain trauma

Author(s):  
Raimund Helbok ◽  
Ronny Beer
1975 ◽  
Vol 228 (4) ◽  
pp. 1141-1144 ◽  
Author(s):  
EG Pavlin ◽  
ttf Hornbein

In anesthetized, paralyzed dogs ventilated to maintain a normal PaCO2, metabolic alkalosis was induced and held constant over 6 h by infusion of sodium bicarbonate. Determination of pH, PCO2, (HCO3 minus), and (lactate) in cisternal and lumbar cerebrospinal fluid (CSF) and in arterial plasma together with measurement of the CSF/plasma DC potential differences permitted calculation of the electrochemical potential difference (mu) for H+ and HCO3 minus; measurements were made prior to induction of metabolic alkalosis at pHa equal to 7.40, as soon after induction as stable arterial values were achieved and 3, 4.5, and 6 h thereafter. A steady state for ion distribution was reached by 4.5 h. Values of mu for H+ and HCO3 minus returned to +0.1 and +0.9 mV of control at 6 h for cisternal CSF and +0.6 and minus 0.4 mV for lumbar CSF. This return of muH+ and muHCO3 minus close to control in the steady state is compatible with passive distribution of these ions between brain extracellular fluid and blood.


2000 ◽  
Vol 130 (2) ◽  
pp. 242-248 ◽  
Author(s):  
M C Walker ◽  
X Tong ◽  
H Perry ◽  
M S Alavijeh ◽  
P N Patsalos

1983 ◽  
Vol 55 (6) ◽  
pp. 1849-1853 ◽  
Author(s):  
S. Javaheri ◽  
A. De Hemptinne ◽  
B. Vanheel ◽  
I. Leusen

We used pH-sensitive double-barreled microelectrodes to measure brain extracellular fluid (ECF) pH in anesthetized dogs during isocapnic infusion acidosis (HCl) and alkalosis (Na2CO3) of 45-60 min duration. The diameter of the tips of these electrodes varied from less than 1 to 27 micron and were placed 5 mm below the surface of the parietal cortex. In group I (metabolic acidosis, n = 5) mean plasma and brain ECF pH fell significantly by 0.221 and 0.025, respectively, with changes in brain ECF pH being 11.3% of those noted in plasma. In group II (metabolic alkalosis, n = 5) mean plasma and brain ECF pH rose significantly by 0.170 and 0.049, respectively, with changes in brain ECF pH being 28.8% of those noted in plasma. Mean arterial and sagittal venous PCO2 and cisternal cerebrospinal fluid (CSF) acid-base variables did not change significantly during acid or base infusion. We conclude that during transients of isocapnic metabolic acid-base perturbations ionic gradients exist between brain ECF and CSF and that changes in brain ECF pH measured by microelectrodes follow the changes in plasma pH. These pH changes may play an important role in respiratory adaptations of acute metabolic acidosis and alkalosis.


Author(s):  
Mohammed A. A. Saleh ◽  
Chi Fong Loo ◽  
Jeroen Elassaiss-Schaap ◽  
Elizabeth C. M. De Lange

AbstractPredicting brain pharmacokinetics is critical for central nervous system (CNS) drug development yet difficult due to ethical restrictions of human brain sampling. CNS pharmacokinetic (PK) profiles are often altered in CNS diseases due to disease-specific pathophysiology. We previously published a comprehensive CNS physiologically-based PK (PBPK) model that predicted the PK profiles of small drugs at brain and cerebrospinal fluid compartments. Here, we improved this model with brain non-specific binding and pH effect on drug ionization and passive transport. We refer to this improved model as Leiden CNS PBPK predictor V3.0 (LeiCNS-PK3.0). LeiCNS-PK3.0 predicted the unbound drug concentrations of brain ECF and CSF compartments in rats and humans with less than two-fold error. We then applied LeiCNS-PK3.0 to study the effect of altered cerebrospinal fluid (CSF) dynamics, CSF volume and flow, on brain extracellular fluid (ECF) pharmacokinetics. The effect of altered CSF dynamics was simulated using LeiCNS-PK3.0 for six drugs and the resulting drug exposure at brain ECF and lumbar CSF were compared. Simulation results showed that altered CSF dynamics changed the CSF PK profiles, but not the brain ECF profiles, irrespective of the drug’s physicochemical properties. Our analysis supports the notion that lumbar CSF drug concentration is not an accurate surrogate of brain ECF, particularly in CNS diseases. Systems approaches account for multiple levels of CNS complexity and are better suited to predict brain PK.


Sign in / Sign up

Export Citation Format

Share Document