Baroreceptor Activation for Hypertension and Heart Failure

2018 ◽  
pp. 1293-1304
Author(s):  
Marabel Schneider ◽  
Ayhan Yoruk ◽  
John P. Gassler
2012 ◽  
Vol 14 (3) ◽  
pp. 238-246 ◽  
Author(s):  
Michael Doumas ◽  
Charles Faselis ◽  
Costas Tsioufis ◽  
Vasilios Papademetriou

1996 ◽  
Vol 271 (1) ◽  
pp. R303-R309 ◽  
Author(s):  
H. Murakami ◽  
J. L. Liu ◽  
I. H. Zucker

Because the renin-angiotensin system is activated in heart failure, we hypothesized that angiotensin II (ANG II) plays a role in altering baroreflex sensitivity in the setting of heart failure. Accordingly, we evaluated the baroreflex control of heart rate (HR) in conscious, chronically instrumented rabbits in the normal state and after the establishment of heart failure. Heart failure was induced by rapid ventricular pacing at a rate of 360-380 beats/min for an average of 14.5 +/- 1.4 days. The data were compared with normal rabbits instrumented in a similar fashion. Baroreflex curves were generated by inflation of implanted hydraulic occluders on the vena cava and aortic arch or by administration of phenylephrine and sodium nitroprusside. Experiments were carried out before and after intravenous administration of the AT1 antagonist L-158,809. Rabbits with heart failure exhibited significantly lower arterial pressure (81 +/- 3 vs. 69 +/- 4 mmHg, P < 0.05), elevated resting HR (230 +/- 5 vs. 260 +/- 10 beats/min, P < 0.05), and elevated left atrial pressure (3.6 +/- 0.7 vs. 13.1 +/- 0.7 mmHg, P < 0.05). ANG II blockade had little effect on resting or baroreflex parameters in normal rabbits. However, in rabbits with heart failure, L-158,809 enhanced baroreflex sensitivity (2.7 +/- 0.5 vs. 4.7 +/- 0.8 beats.min-1.mmHg-1; P < 0.05), primarily by increasing the minimum HR evoked during baroreceptor activation. beta 1-Blockade had no effect on any baroreflex parameter after L-158,809 in rabbits with heart failure. However, L-158,809 significantly reduced the minimum HR after pretreatment with atropine in rabbits with heart failure. These data suggest that ANG II plays a role in modulation of cardiac sympathetic tone in this model of heart failure and may be responsible for the depressed baroreflex sensitivity observed in heart failure.


Hypertension ◽  
2007 ◽  
Vol 50 (5) ◽  
pp. 904-910 ◽  
Author(s):  
Irving H. Zucker ◽  
Johnnie F. Hackley ◽  
Kurtis G. Cornish ◽  
Bradley A. Hiser ◽  
Nicholas R. Anderson ◽  
...  

2016 ◽  
Vol 105 (10) ◽  
pp. 838-846 ◽  
Author(s):  
Edoardo Gronda ◽  
GianMaria Brambilla ◽  
Gino Seravalle ◽  
Alessandro Maloberti ◽  
Matteo Cairo ◽  
...  

Author(s):  
George Hug ◽  
William K. Schubert

A white boy six months of age was hospitalized with respiratory distress and congestive heart failure. Control of the heart failure was achieved but marked cardiomegaly, moderate hepatomegaly, and minimal muscular weakness persisted.At birth a chest x-ray had been taken because of rapid breathing and jaundice and showed the heart to be of normal size. Clinical studies included: EKG which showed biventricular hypertrophy, needle liver biopsy which showed toxic hepatitis, and cardiac catheterization which showed no obstruction to left ventricular outflow. Liver and muscle biopsies revealed no biochemical or histological evidence of type II glycogexiosis (Pompe's disease). At thoracotomy, 14 milligrams of left ventricular muscle were removed. Total phosphorylase activity in the biopsy specimen was normal by biochemical analysis as was the degree of phosphorylase activation. By light microscopy, vacuoles and fine granules were seen in practically all myocardial fibers. The fibers were not hypertrophic. The endocardium was not thickened excluding endocardial fibroelastosis. Based on these findings, the diagnosis of idiopathic non-obstructive cardiomyopathy was made.


Author(s):  
Chi-Ming Wei ◽  
Margarita Bracamonte ◽  
Shi-Wen Jiang ◽  
Richard C. Daly ◽  
Christopher G.A. McGregor ◽  
...  

Nitric oxide (NO) is a potent endothelium-derived relaxing factor which also may modulate cardiomyocyte inotropism and growth via increasing cGMP. While endothelial nitric oxide synthase (eNOS) isoforms have been detected in non-human mammalian tissues, expression and localization of eNOS in the normal and failing human myocardium are poorly defined. Therefore, the present study was designed to investigate eNOS in human cardiac tissues in the presence and absence of congestive heart failure (CHF).Normal and failing atrial tissue were obtained from six cardiac donors and six end-stage heart failure patients undergoing primary cardiac transplantation. ENOS protein expression and localization was investigated utilizing Western blot analysis and immunohistochemical staining with the polyclonal rabbit antibody to eNOS (Transduction Laboratories, Lexington, Kentucky).


Sign in / Sign up

Export Citation Format

Share Document