Prefrontal Cortex and Human Memory: An Integrated Account From the Cognitive Neuroscience of Working and Long-Term Memory ☆

Author(s):  
Robert S. Blumenfeld ◽  
Charan Ranganath
2005 ◽  
Vol 17 (7) ◽  
pp. 994-1010 ◽  
Author(s):  
Charan Ranganath ◽  
Michael X. Cohen ◽  
Craig J. Brozinsky

Theories of human memory have led to conflicting views regarding the relationship between working memory (WM) maintenance and episodic long-term memory (LTM) formation. Here, we tested the prediction that WM maintenance operates in two stages, and that processing during the initial stage of WM maintenance promotes successful LTM formation. Results from a functional magnetic resonance imaging study showed that activity in the dorsolateral prefrontal cortex and hippocampus during the initial stage of WM maintenance was predictive of subsequent LTM performance. In a behavioral experiment, we demonstrated that interfering with processing during the initial stage of WM maintenance impaired LTM formation. These results demonstrate that processing during the initial stage of WM maintenance directly contributes to successful LTM formation, and that this effect is mediated by a network that includes the dorsolateral prefrontal cortex and the hippocampus.


2020 ◽  
pp. 282-310
Author(s):  
Patricia A. Reuter-Lorenz ◽  
Alexandru D. Iordan

This chapter reviews evidence from behavioural and cognitive neuroscience research that supports a unitary view of memory whereby working memory and long-term memory phenomena arise from representations and processes that are largely shared when remembering over the short or long term. Using ‘false working memories’ as a case study, it highlights several paradoxes that cannot be explained by a multisystem view of memory in which working memory and long-term memory are structurally distinct. Instead, it is posited that behavioural memory effects over the short and long term relating to semantic processing, modality/domain-specificity, dual-task interference, strategic processing, and so on arise from the differences in activational states and availability of different representational features (e.g. sensory/perceptual, associative, action-based) that vary in their time courses and activity, attentional priority, and susceptibility to interference. Cognitive neuroscience evidence primarily from brain imaging methodologies that support this view is reviewed.


2020 ◽  
Vol 10 (12) ◽  
pp. 937
Author(s):  
Soyiba Jawed ◽  
Hafeez Ullah Amin ◽  
Aamir Saeed Malik ◽  
Ibrahima Faye

The hemispherical encoding retrieval asymmetry (HERA) model, established in 1991, suggests that the involvement of the right prefrontal cortex (PFC) in the encoding process is less than that of the left PFC. The HERA model was previously validated for episodic memory in subjects with brain traumas or injuries. In this study, a revised HERA model is used to investigate long-term memory retrieval from newly learned video-based content for healthy individuals using electroencephalography. The model was tested for long-term memory retrieval in two retrieval sessions: (1) recent long-term memory (recorded 30 min after learning) and (2) remote long-term memory (recorded two months after learning). The results show that long-term memory retrieval in healthy individuals for the frontal region (theta and delta band) satisfies the revised HERA asymmetry model.


2022 ◽  
Author(s):  
Jasmin M. Kizilirmak ◽  
Maxi Becker

This is one of two chapters on "A cognitive neuroscience perspective on insight as a memory process" to be published in the "Routledge International Handbook of Creative Cognition" by L. J. Ball & F. Valleé-Tourangeau (Eds.). While the previous chapter discussed the role of long-term memory for solving problems by insight [https://psyarxiv.com/zv4dk], the current chapter focuses on the role of insight problem solving for long-term memory formation. Insight in problem solving has long been assumed to facilitate memory formation for the problem and its solution. Here, we discuss cognitive, affective, and neurocognitive candidate mechanisms that may underlie learning in insight problem solving. We conclude that insight appears to combine several beneficial effects that each on their own have been found to facilitate long-term memory formation: the generation effect, subjective importance of the discovery of the solution, intrinsic reward, schema congruence, and level-of-processing. A distributed set of brain regions is identified that is associated with these processes. On the one hand, the more affective response related to pleasure, surprise, and novelty detection is linked to amygdala, ventral striatum, and dopaminergic midbrain activity, supporting an important role of reward learning. On the other hand, insight as completing a schema is associated with prior knowledge dependent and medial prefrontal cortex mediated memory formation. Thus, learning by insight may reflect a fast route to cortical memory representations. However, many open questions remain, which we explicitly point out during this review.


NeuroImage ◽  
2001 ◽  
Vol 14 (1) ◽  
pp. 48-59 ◽  
Author(s):  
Todd S. Braver ◽  
Deanna M. Barch ◽  
William M. Kelley ◽  
Randy L. Buckner ◽  
Neal J. Cohen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document